首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 写出f(x)在[一2,2]上的表达式;
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 写出f(x)在[一2,2]上的表达式;
admin
2018-12-19
58
问题
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。
写出f(x)在[一2,2]上的表达式;
选项
答案
当一2≤x<0,即0≤x+2<2时,有 f(x)=kf(x+2)=k(x+2)[(x+2)
2
一4]=kx(x+2)(x+4)。 所以,f(x)在[一2,2]上为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/gWWRFFFM
0
考研数学二
相关试题推荐
求
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在ξ∈(0,3),使f’’(ξ)=0.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt证明F’(t)单调增加.
(2006年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y(χ,y)≠0.已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2008年)曲线y=(χ-5)的拐点坐标为_______.
(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设A为4阶矩阵,其秩r(A)=3,那么r((A*)*)为()
随机试题
A.酸枣仁B.补骨脂C.巴豆D.女贞子E.马钱子呈肾形,略扁;表面黑色、黑褐色或灰褐色,具细微网状皱纹。该药材是
“与pH较低的注射液配伍时易产生沉淀”的药物不是
原发性醛固酮增多症出现的代谢紊乱为()
关于安全生产法的理解,错误的是()。
波特五力模型中涉及的五种力量包括()。
()于2008年起陆续颁布了《巴塞尔新资本协议》相关执行指引。
“双基教学”即基本概念和基本原理的教学。()
It’soneofourcommonbeliefsthatmiceareafraidofcats.Scientistshavelongknownthatevenifamousehasneverseenac
某甲捏造某乙(某机关干部)受贿20000元,并写成小字报四处散发、张贴,致使某乙名誉受到很大损害。某甲的行为属于()。
土地革命战争时期,毛泽东以马克思主义为指导,发表了{中国的红色政权为什么能够存在?》、《井冈山的斗争》、《星星之火,可以燎原》、《反对本本主义》等重要著作,这些著作
最新回复
(
0
)