首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
admin
2020-02-27
33
问题
设n维向量α
1
,α
2
,…,α
s
的秩为r,则下列命题正确的是
选项
A、α
1
,α
2
,…,α
s
中任何r一1个向量必线性无关.
B、α
1
,α
2
,…,α
s
中任何r个向量必线性无关.
C、如果s>n,则α
s
必可由α
1
,α
2
,…,α
s-1
线性表示.
D、如果r=n,则任何n维向量必可由α
1
,α
2
,…,α
s
线性表示.
答案
D
解析
r(α
1
,α
2
,…,α
s
)=r
α
1
,α
2
,…,α
s
中一定存在r个向量线性无关,而任意r+1个向量必线性相关.
当向量组的秩为r时,向量组中既可以有r—1个向量线性相关,也可以有r个向量线性相关,故(A)、(B)均错误.例如向量α
1
,α
2
,α
3
,α
4
分别为
(1,0,0,0),(0,1,0,0),(0,0,1,0),(3,0,0,0),
其秩为3,其中α
1
,α
4
线性相关,α
1
,α
2
,α
4
也线性相关.该例说明,4维向量可以有2个向量线性相关,也可以有3个向量线性相关.但肯定有3个向量线性无关.
当s>n时,表明α
1
,α
2
,…,α
s
必线性相关,此时有α
i
可以由α
1
,…,α
i-1
,α
i+1
,…,α
s
线性表示,但α
s
不一定能由α
1
,…,α
s-1
线性表示.故(C)不正确.
若r(α
1
,α
2
,…,α
s
)=n,则对任何n维向量β必有r(α
1
,α
2
,…,α
s
,β)=n.故(D)正确.因此应诜(D).
转载请注明原文地址:https://jikaoti.com/ti/gGiRFFFM
0
考研数学三
相关试题推荐
求的反函数的导数.
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生,4不发生的概率相等,则A与B都发生的概率是____________.
设f(x)=在x=0处连续,则a=______.
幂级数的收敛域是___________.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα=α2+α3,Aα3=α3+α1,则|A|=.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2+4x1x2-8x2x3为标准形.
设连续型随机变量X的所有可能值在区间[a,b]之内,证明:DX≤
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b-f(b).证明:存在ξ1∈(a,b)(i=1,2,…,n),使得=1.
设a为常数,则级数()
设f(x)=arctanx,ξ为f(x)在区间[0,t]上满足拉格朗日中值定理的一个点,且已知0<t<1,求极限。
随机试题
下列属于经验估计预测法的有()
患者,女,52岁。绝经3年,近1个月自觉腹胀、腹痛,腹部出现肿块。妇科检查:外阴、阴道无萎缩,宫颈光滑,子宫前位,正常大小,右侧附件区10cm×5cm×3cm肿物,左侧附件区8cm×3cm×2cm肿物,半实质性,囊壁有乳头生长,囊液混浊,呈血性。有腹水,全
Ⅱ型糖尿病血糖升高的主要原因不包括的是
紧张度较低的脉象是
营销思想是一种()的经营哲学。
下列属于行政诉讼受案范围的是()。
某贸易公司甲从国外购进200吨新闻纸,委托某船运公司乙运往中国境内。一日,乙船运公司的运货船载着该船船员私自在国外购买的手机、电视机等电器,在中国某市附近海域进行走私交易时,被中国某海关抓获。该海关做出决定,将包括甲公司200吨新闻纸在内的船上所有物品予以
A、4B、5C、6D、7C将T2还原为森林T1,其中有4棵树:C、D、F、G,I和J是叶子结点。
Municipalbansonsmokinginrestaurantsandbarsarehighlycontroversial,buthistoryshowstheycanalsobehighlyeffective.
ThefirstperformanceofTchaikovsky’sTheNutcracker,inSt.Petersburgin1892,wasaflop.Wroteonecriticthenextday:"Fo
最新回复
(
0
)