设f(x)=arctanx,ξ为f(x)在区间[0,t]上满足拉格朗日中值定理的一个点,且已知0<t<1,求极限。

admin2019-01-25  58

问题 设f(x)=arctanx,ξ为f(x)在区间[0,t]上满足拉格朗日中值定理的一个点,且已知0<t<1,求极限

选项

答案函数f(x)=arctanx在[0,t]上连续,在开区间(0,t)上可导,根据拉格朗日中值定理,存在一点ξ∈(0,t),使得 [*]

解析 本题考查拉格朗日中值定理和未定式极限的求解。首先通过拉格朗日中值定理确定题中点ξ所满足的关于t的函数,然后将该函数代入极限式,通过洛必达法则和等价无穷小替换求出最终极限
转载请注明原文地址:https://jikaoti.com/ti/YgBRFFFM
0

最新回复(0)