首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年试题,十二)设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T (1)p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,
(1999年试题,十二)设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T (1)p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,
admin
2014-07-22
43
问题
(1999年试题,十二)设向量组α
1
=(1,1,1,3)
T
,α
2
=(一1,一3,5,1)
T
,α
3
=(3,2,一1,p+2)
T
,α
4
=(一2,一6,10,p)
T
(1)p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)
T
用α
1
,α
2
,α
3
,α
4
线性表出;
(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
由题设,向量组α
1
,α
2
,α
3
,α
4
线性无关等价于矩阵A=(α
1
,α
2
,α
3
,α
4
)的行列式|A|≠0,即[*]即p≠2时,向量组α
1
,α
2
,α
3
,α
4
线性无关,此时α用α
1
,α
2
,α
3
,α
4
线性示等价于方程组Ax=α,将相应的增广矩阵化为行简化阶梯形为[*]所以[*]因此[*]当p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关,此时向量组的秩等于3,α
1
,α
2
,α
3
(α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
一向量是否可用一组向量线性表示,等价于对应的线性方程组是否有解,若对应的线性方程组无解,则不能线性表示;若对应的线性方程组有唯一解,则可以线性表示,并且表示方法唯一;若对应的线性方程组有无穷多组解,则可以线性表示,并且表示方法有无穷多种.
转载请注明原文地址:https://jikaoti.com/ti/gGDRFFFM
0
考研数学二
相关试题推荐
写出f(x)=lnx按(x-2)的幂展开的带皮亚诺余项的三阶泰勒公式是________.
设其中φ(x)为有界函数,则f(x)在x=0处().
已知函数是|x|的一个原函数,则k=().
设求x的值.
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax1x3+2ax2x3,a为正整数。(1)若f(x1,x2,x3)是正定二次型,求a的值;(2)求正交变换x=Qy,使二次型f(x1,x2,x3)化为标准形
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2.求a的值。
设函数f(x)在[0,+∞)内二阶可导,且x∈(0,+∞)都有f"(x)≠0,过曲线y=f(x)(0<x<+∞)上的任意一点(x0,f(x0))作切线,证明:除切点外,该切线与曲线y=f(x)无交点。
当x→1时f(x)=(x2-1)/(x-1)e1/(x-1+)的极限为().
已知f(x)是微分方程xf′(x)-f(x)=满足初始条件f(1)=0的特解,则f(x)dx=__________.
随机试题
科学家对发掘于埃塞俄比亚哈达尔遗址的南方古猿足骨的第4根跖骨化石进行分析研究后发现,非洲南方古猿具有定型的弓形足。他们据此认为,人类的祖先早在320万年前就开始像现代人一样用双脚行走。以下哪项如果为真,最能支持上述论证?()
电子商务最早产生于20世纪()年代。
采用安全利率加风险调整值法确定还原利率时,可以选用一年期国债利率或一年期银行定期贷款利率为安全利率。()
贡量为m的物体自高H处水平抛出,运动中受到与速度一次方成正比的空气阻力FR作用,FR=一kmv,k为常数。则其运动微分方程为()。
查阅或者复制会计档案的人员,可以根据需要对原卷册进行拆封。
了解学生,就是要了解学生个人的学习情况、家庭状况。()
下面句子中没有歧义的一项是()。
Methodsofstudyingvary;whatworks【C1】______forsomestudentsdoesn’tworkatallforothers.Theonlythingyoucandois
Heoftenfindsfaultwithmywork.
Thebiggestsafetythreatfacingairlinestodaymaynotbeaterroristwithagun,butthemanwithaportablecomputerinbusin
最新回复
(
0
)