首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y=y(x)是微分方程(x2+y2)dy=dx—dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0). (1)证明:; (2)证明:均存在.
已知y=y(x)是微分方程(x2+y2)dy=dx—dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0). (1)证明:; (2)证明:均存在.
admin
2015-08-17
48
问题
已知y=y(x)是微分方程(x
2
+y
2
)dy=dx—dy的任意解,并在y=y(x)的定义域内取x
0
,记y
0
=y(x
0
).
(1)证明:
;
(2)证明:
均存在.
选项
答案
本题以微分方程的概念为载体,考查一元微积分学的综合知识,是一道有一定难度的综合题.(1)将微分方程(x
2
+y
2
)dy=dx一dy变形为[*],则y=y(x)为严格单调增函数,根据单调有界准则,只要证明y(x)有界即可.对[*]两边从x
0
到x积分,得[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/fqPRFFFM
0
考研数学一
相关试题推荐
已知x=zey+x确定函数z=z(x,y),则dz|(e,0)=________。
方程yy"-y’2=y2的满足初始条件y(0)=1,y’(0)=0的特解为________.
设y=y(x)为微分方程2xydx+(x2-1)dy=0满足初始条件y(0)=1的解,则∫01/2y(x)dx为().
若四次方程a。x4+a1x3+a2x+a3x+a4=0有四个不同的实根,试证明4a。x3+3a1x2+2a2x+a3=0的所有根皆为实根.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
早晨开始下雪整天不停,中午一辆扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
将函数y=5-|2x-1|用分段形式表示,并作出函数图形。
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设f(x)=x2,f[φ(x)]=-x2+2x+3,且φ(x)≥0。求φ(x)及其定义域和值域
随机试题
气质是以高级神经活动类型为基础的()。
甘露消毒丹的功用是
下列设备验收内容中,属于外观检查内容的是()。
事物度的原理,要求我们要注意“适度”的原则,根据情况决定能不能超越和破坏事物的度。()
我国现存最早的木构架建筑的实物是()。
下列叙述正确的是()。
体育
设3阶矩阵只有一个线性无关的特征向量,则t=______。
WhendidJohngivehisfriendacigarette?
Morethanthree-quartersofthechildrenweinterviewedsaidthey’resometimesafraidtobehomealone.Ifyoudecideyourchild
最新回复
(
0
)