首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为三维列向量,记矩阵 A=[α1,α2,α3], B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3] 如果|A|=1,那么|B|=__________.
设α1,α2,α3均为三维列向量,记矩阵 A=[α1,α2,α3], B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3] 如果|A|=1,那么|B|=__________.
admin
2019-03-22
92
问题
设α
1
,α
2
,α
3
均为三维列向量,记矩阵
A=[α
1
,α
2
,α
3
], B=[α
1
+α
2
+α
3
,α
1
+2α
1
+4α
3
,α
1
+3α
2
+9α
3
]
如果|A|=1,那么|B|=__________.
选项
答案
2
解析
解一 B=[α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
]=[α
1
,α
2
,α
3
]
①
利用命题2.1.2.1(2)得到
解二 用行列式性质对B的列向量进行运算找出与A的行列式的关系,即
|B|=|α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
|
|α
1
+α
2
+α
3
,α
2
+3α
3
,α
2
+5α
3
|
|α
1
+α
2
+α
3
,α
2
+3α
3
,2α
3
|=2|α
1
+α
2
+α
3
,α
2
+3α
3
,α
3
|
|2|α
1
+α
2
+α
3
,α
2
,α
3
|
2|α
1
,α
2
,α
3
|=2|A|=2.
(注:命题2.1.2.1 设A=[a
ij
]
n×n
,B=[b
ij
]
n×n
,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;)
转载请注明原文地址:https://jikaoti.com/ti/dpBRFFFM
0
考研数学三
相关试题推荐
求幂级数的收敛域及和函数。
[*]
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2X。(Ⅰ)记P=(x,Ax,A2x)。求三阶矩阵B,使A=PBP—1;(Ⅱ)计算行列式|A+E|。
已知A为三阶方阵,A2一A一2E=0,且0<|A|<5,则|A+2E|=________。
函数y=C1ex+C2e—2x+xex满足的一个微分方程是()
设函数y=则y(n)(0)=________。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Q),下的标准形为y12+y22,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
直角坐标中的累次积分I=f(x,y)dy化为极坐标先r后θ次序的累次积分I=___________.
随机试题
关于横膈的叙述,错误的是
阿司匹林的药理作用是
关于采暖居住建筑的热工设计,下列哪条符合采暖住宅建筑节能设计有关标准规定?[2003年第069题]
设备安装准备阶段主要监理工作主要内容包括()方面。
开发、利用、节约、保护水资源和防治水害,应当按照()统一制定规划。
属于会计要素的收入的项目有()。
违反社会公德,但未造成严重影响的人可以参加旅行社经理资格考试。()
阅读材料回答问题材料1钱学森的报国情怀钱学森,1911年12月11日生于上海,1935年去美留学,1936年在美国加州理工学院考取了冯•卡门教授的博士研究生,冯•卡门是美国航空科技领域的权威,人们把其称为“超音速飞机之父”。钱学森获得博士学位以后,导
数据流图中带有箭头的线段表示的是( )。
Oncetheydecidedtohavechildren,MiShelandCarlMeissnertackledthenextbigissue:Shouldtheytrytohaveagirl?Itwas
最新回复
(
0
)