首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A为三阶方阵,A2一A一2E=0,且0<|A|<5,则|A+2E|=________。
已知A为三阶方阵,A2一A一2E=0,且0<|A|<5,则|A+2E|=________。
admin
2017-12-29
24
问题
已知A为三阶方阵,A
2
一A一2E=0,且0<|A|<5,则|A+2E|=________。
选项
答案
4
解析
设A的特征值λ
i
对应的特征向量是x
i
(x
i
≠0,i=1,2,3),则Ax
i
=λx
i
。
由A
2
一A一2E=0可知,特征向量x
i
满足(A
2
一A一2E)x
i
=0,从而有λ
i
2
一λ
i
一2=0,解得λ
i
=一1或λ
i
=2 0再根据|A|=λ
1
λ
2
λ
3
及0<|A|<5可得,λ
1
=λ
2
=一1,λ
3
=2。
由Ax
i
=λx
i
可得(A+2E)x
i
=(λ
i
+2)x
i
,即A+2E的特征值μ
i
(i=1,2,3)满足μ
i
=λ
i
+2,所以μ
1
=μ
2
=1,μ
3
=4,故|A+2E|=1×1×4=4。
转载请注明原文地址:https://jikaoti.com/ti/TyKRFFFM
0
考研数学三
相关试题推荐
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论:aij=-AijATA=E且|A|=-1.
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
线性方程组则
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
求下列极限.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
当级数()
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
随机试题
患者女性50岁,左腮腺区反复肿胀三年,平时有胀感,口内有咸味。检查患者腮腺导管口时,较符合慢性阻塞性腮腺炎的体征是
骨折的专有体征是
香加皮中毒,解救时禁用
人们希望生活在群体之中,并获得亲情、爱情、友情和归属感等需要为()需要。
我国明清时期(鸦片战争以前)的文学艺术和科学技术取得了哪些重大成就?分别具有什么特征?分析明清时期文学艺术繁盛而科学技术停滞的社会原因。
C是线段AB上一点,D是线段CB的中点,已知图中所有线段的长度之和为23,线段AC和线段CB的长度都是正整数,那么线段AC的长度为:
试述“百家争鸣”的社会背景及主要原因。
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
阅读下列说明,回答问题,将解答填入答题纸的对应栏内。[说明]某省政府根据整体战略规划部署,拟建设统一身份认证系统。该系统为用户提供注册、实名验证、身份鉴别等服务,实现可信注册、实名验证以及安全登录等功能,支撑政务服务的有序运行。完成开发任务后,项目进
ANiceCupofTeaTheLegendaryOriginsofTeaThestoryofteabeganinancientChinaover5,000yearsago.Accordingtole
最新回复
(
0
)