首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解; ③(I)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(I)的解. 其中
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解; ③(I)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(I)的解. 其中
admin
2019-08-12
63
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(I)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(I)的解;
③(I)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(I)的解.
其中正确的是 ( )
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
X)=0,故(I)的解必是(Ⅱ)的解,也即①正确,③错误.
当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零,可以证明这种情况下x,Ax,…,A
n
x是线性无关的.由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(I)的解,故②正确,④错误.故选(B).
转载请注明原文地址:https://jikaoti.com/ti/dQERFFFM
0
考研数学二
相关试题推荐
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
方程=0的实根是_______.
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
一电子仪器由两部分构成,以X和Y分别表示两部分部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(1)问X和Y是否独立;(2)求两部件的寿命都超过100小时的概率α。
设f(x)是连续函数.求初值问题的解,其中a>0;
求极限:
计算其中D是由圆周x2+y2=4,x2+y2=1及直线y=0,y=x所围的位于第一象限的闭区域.
随机试题
下列属于数字产品的有()
胃、十二指肠溃疡急性穿孔最常见的是
呼吸道异物X线征象有
对毛果芸香碱叙述错误是
A.肘横纹内侧端B.尺骨鹰嘴与肱骨内上髁之间C.肩胛骨冈下窝中央D.肩胛冈下缘凹陷中E.尺骨鹰嘴上1寸
妊娠末期孕妇的白细胞计数增多,一般为
甲企业1999年6月1日以2300000元的价格(其中含税金及其他税费7500元)购入某企业1999年1月1日发行的20张面值为100000元、票面利率为6%的债券。据此计算的甲企业债券投资溢价是()。
大小猴子共35只,他们一起去采摘水蜜桃。猴王不在的时候,一只大猴子一小时可采15千克,一只小猴子一小时可采摘11千克。猴王在场监督的时候,每只猴子不论大小每小时都可多采摘12千克。有一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采
作为《联合国气候变化框架公约》及《京都议定书》的缔约方,中国一向致力于推动公约和议定书的实施,认真履行相关义务。中国落实巴厘路线图的原则不包括:
甲公司以3000万元取得乙公司30%的股权,取得投资时乙公司可辨认净资产的公允价值为9000万元。甲公司能够对乙公司施加重大影响,则甲公司应计入长期股权投资的金额为()万元。
最新回复
(
0
)