首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________。
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________。
admin
2021-01-31
55
问题
设A为三阶实对称矩阵,α
1
=(m,-m,1)
T
是方程组AX=0的解,α
2
=(m,1,1-m)
T
是方程组(A+E)X=0的解,则m=________。
选项
答案
1
解析
由AX=0有非零解得rA<3,从而λ=0为A的特征值,α
1
=(m,-m,1)
T
为其对应的特征向量。
由(A+E)x=0有非零解得r(A+E)<3,|A+E|=0,λ=-1为A的另一个特征值,其对应的特征向量为α
2
=(m,1,1-m)
T
,因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,于是有m=1。
转载请注明原文地址:https://jikaoti.com/ti/cRaRFFFM
0
考研数学三
相关试题推荐
(1988年)过曲线y=x2(x≥0)上某点A作一切线.使之与曲线及z轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
(90年)已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二
(2003年)设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)
[2003年]设二次型f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
设随机变量X1,X2,…,X12独立同分布且方差存在,则随机变量U=X1+X2+…+X7,V=X6+X7+…+X12的相关系数ρpv=____________.
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为由切比雪夫不等式得P{|X+Y-1|≤10}≥().
随机试题
茶叶吸附性强,能够吸附其他异味、杂味,导致茶叶香气变杂,不适合品饮,所以在茶叶存放过程中,要远离其他香气物质
回购协议的质押品包括__________、_____________、____________、____________、____________。
试述罗特的控制源理论。
尿频量多,混浊如脂膏,尿有甜味,口干唇燥,舌质红,脉沉细数者,治宜选用()(2000年第66题)
公卫医师何某在取得医师资格证书和执业许可证后的一年里,擅自从事婚前医学检查、遗传病诊断和产前诊断,虽经卫生行政部门制止,仍不改正,并又施行终止妊娠手术。依据《母婴保健法》规定,应对何给予的行政处罚是
患者,男性,72岁,心前区压榨性疼痛2小时急诊入院。入院后出现呼吸困难、心悸。护士查体血压下降,心率160/分,心电图示QRS波群宽大畸形,QRS时限>0.12秒,R_R间期不绝对相等,刺激迷走神经时心率无变化。护士如果为患者行心脏电复律,则电极板的位
经审查,批准拆迁,房屋拆迁主管部门发给拆迁申请人()。
期货公司董事、监事和高级管理人员1年内累计()次被中国证监会及其派出机构进行监管谈话的,中国证监会及其派出机构可以将其认定为不适当人选。
甲企业自行研发一项专有技术,该项技术完成后用于企业管理,至2009年4月30日研究实际发生各项试验费用、材料费用等120万元(包含增值税),此时甲公司确定该项技术已经具有可行性并且能够为企业带来经济利益,2009年5月1日至10月5日甲公司又为开发该技术购
在违反治安管理行为构成要件中,()处于核心地位。
最新回复
(
0
)