在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.

admin2019-02-20  23

问题 在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.

选项

答案过椭圆上任意点(x0,y0)的切线的斜率y’(x0)满足 [*] 切线方程为 [*] 分别令y=0与x=0,得x,y轴上的截距: [*] 于是该切线与椭圆及两坐标轴所围图形的面积(图2.14)为 [*] 问题是求:[*]的最小值点,其中[*]将其代入S(x)中,问题可进一步化为求函数f(x)=x2(a2-x2)在闭区间[0,a]上的最大值点. 由f’(x)=2x(a2-2x2)=0(x∈(0,a))得a2-2x2=0,[*]注意f(0)=f(0)=0,f(x0)>0,故[*]是f(x)在[0,a]的最大值点.因此[*]为所求的点.

解析
转载请注明原文地址:https://jikaoti.com/ti/bmBRFFFM
0

最新回复(0)