首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
admin
2017-07-26
40
问题
设f(x)=x
T
Ax为一n元二次型,且有R
n
中的向量x
1
和x
2
,使得f(x
1
)>0,f(x
2
)<0.证明:存在R
n
中的向量x
0
≠0,使f(x
0
)=0.
选项
答案
令向量x
0
=tx
1
+x
2
,其中t为待定实数,选择t,使f(x
0
)=0,即 x
0
T
Ax
0
=(tx
1
+x
2
)
T
A(tx
1
+x
2
) =(tx
1
T
+x
2
T
)A(tx
1
+x
2
) =t
2
x
1
T
Ax
1
+2tx
1
T
Ax
2
+x
2
T
Ax
2
=0, 记实数a=x
1
T
Ax
1
,b=x
1
T
Ax
2
,c=x
2
T
Ax
2
,则由题设条件知a>0,c<0.于是上式可写为 at
2
+2bt+c=0. 由于关于t的这个二次方程有a>0,判别式△=4b
2
一4ac>0,故该方程必有实根t
0
≠0,于是有向量x
0
=tx
1
+x
2
≠0(否则t
0
x
1
+x
2
=0,则x
2
=一t
0
x
1
,于是f(x
2
)=x
2
T
Ax
2
=(一t
0
x
1
)
T
A(一t
0
x
1
)=t
0
2
x
1
T
Ax
1
>0,它与已知的f(x
2
)<0相矛盾),使得 f(x
0
)=x
0
T
Ax
0
=at
0
2
+abt
0
+c=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/OVSRFFFM
0
考研数学三
相关试题推荐
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设二维随机变量(X,Y)服从二维正态分布,则下列说法不正确的是().
已知yt=3et是差分方程yt-1+ayt-1=et的一个特解,则a=__________.
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
选取适当的变换,证明下列等式:
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后抽出两份.(I)求先抽到的一份是女生的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为_____.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
女性,32岁。上呼吸道感染后2周,出现肉眼血尿,颜面水肿入院。体检:血压160/100mmHg,尿蛋白(++)。红细胞满视野。进一步收集临床资料中诊断意义最小的是()
附子中毒的症状有()
A.金刚烷胺 B.利巴韦林 C.齐多夫定 D.奥司他韦 E.阿昔洛韦治疗A型流感的药物是
根据我国选举法的规定,下列选项中的哪些行为将依法受到行政处分或者刑事处罚?()
机械波波动方程为y=0.03cos6π(t+0.01x)(SI),则()。
企业进行风险管理,需要收集风险管理初始信息,下列属于分析战略风险收集的信息的有()。
以下哪一项适用旅行社责任保险的赔偿范围( )。
在布鲁姆的教育目标分类学中,认知领域的最高级目标是()。
It’snosecretthatmostofusdon’tgetenoughsleepandsufferforit.Ifyou’rebetweentheagesof16and64,【C1】______don’t
Mostpeoplewhotravellongdistancescomplainofjetlag.Jetlagmakesbusinesstravelerslessproductiveandmoreprone【51】maki
最新回复
(
0
)