首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
admin
2019-01-19
36
问题
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
选项
A、无法确定方程组是否有解。
B、方程组有无穷多解。
C、方程组有唯一解。
D、方程组无解。
答案
B
解析
由于非齐次线性方程组的系数矩阵和增广矩阵的秩相同是方程组有解的充要条件,且方程组的未知数个数是6,而系数矩阵的秩为4,因此方程组有无穷多解,故选B。
转载请注明原文地址:https://jikaoti.com/ti/agBRFFFM
0
考研数学三
相关试题推荐
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
设数列{an}=0满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),S(x)是幂级数anxn的和函数.(1)证明S"(x)一S(x)=0;(2)求S(x)的表达式.
设三阶实对称矩阵A的特征值是1,2,3.A的属于特征值1,2的特征向量分别是α1=[一1,一1,1]T,α2=[1,一2,一1]T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
设函数f(x)、g(x)均可微,且满足条件u(x,y)=f(2x+5y)+g(2x一5y),u(x,0)=sin2x,u’y(x,0)=0.求f(x)、g(x)、u(x,y)的表达式.
设函数z=f(x,y)具有二阶连续偏导数,且≠0,试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2.f"xx一2f’x.f’y.f"xy+(f’x)2.f’yy=0.
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
在一定条件下,先向试液中加入过量的EDTA标准溶液,然后用另一种金属离子的标准溶液滴定过量的EDTA,由两种标准溶液的浓度和用量求得被测物质的含量的方法是()滴定法。
A.PPDB.腰椎穿刺C.肺部CTD.脑电图E.淋巴结活检患者,男,18岁。发热伴头痛、呕吐2周入院,X线胸片示双肺弥漫性粟粒状密度增高影,为明确诊断,进一步要做的检查是
下面的护理项目中哪项不适于电复律治疗术后的护理
应用心理学的方法影响或改变患者的感受、认识、情感和行为,调整个体与环境之间的平衡,称之为
梁受力如图5-88所示,在B截面处()。
下列关于保险索赔的说法中,正确的是()。
诺成合同自当事人双方意思表示一致时即可成立,不以一方交付标的物为合同的成立要件。当事人交付标的物属于履行合同,而与合同的成立无关。下列选项中属于诺成合同的有()。
下列属于经济结构的是()。
文物单位接待游客要适度,文中举出的不适度的例子是( )。以下选项最适合作本文标题的是( )。
在表单设计中,用于控制只有两种取值的字段的控件,最好使用()。
最新回复
(
0
)