首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
admin
2019-02-20
28
问题
设函数z=(1+e
y
)cosx-ye
y
,证明:函数z有无穷多个极大值点,而无极小值点.
选项
答案
(I)先计算[*] [*] (Ⅱ)求出所有的驻点.由[*] 解得(x,y)=(2nπ,0) 或 (x,y)=((2n+1)π,-2), 其中n=0,±1,±2,… (Ⅲ)判断所有驻点是否是极值点,是极大值点还是极小值点. 在(2nπ,0)处,由于[*] 则(2nπ,0)是极大值点. 在((2n+1)π,-2)处,由于[*] 则((2n+1)π,-2)不是极值点.因此函数z有无穷多极大值点(2nπ,0)(n=0,±1,±2,…),而无极小值点.
解析
转载请注明原文地址:https://jikaoti.com/ti/aSBRFFFM
0
考研数学三
相关试题推荐
函数y=C1ex+C2e﹣2x+xex满足的一个微分方程是().
设X1,X2,…,Xm是取自正态总体N(μ,σ2)的简单随机样本,其均值和方差分别为,S2,则可以作出服从自由度为n的χ2分布的随机变量是()
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设函数则f(x)在x=0处
设函数f(x)=|x3一1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的()
设则在点x=1处函数f(x)
设f(x)有任意阶导数且f’(x)=f3(x),则f(n)(x)=______.
设f(x)在(一1,1)内具有二阶连续导数且f”(x)≠0.证明:(1)对于任意的x∈(一1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
随机试题
下列活血药中,哪一味不兼有行气作用
21岁女性,右附件区触及囊性包块,直径10cm,B超和腹平片提示囊肿内包含骨骼和牙齿。若为恶性,血中下列哪项肿瘤标记物不会升高
首乌蒸制后消除了滑肠致泻的副作用,其原因是
丙纶纤维地毯的下述特点中,何者是不正确的?[2004年第052题]
下列路基工程可安排冬期施工的是()。
干粉灭火系统中,干粉输送管道在安装前需清洁管道内部,避免油、水、泥沙或异物存留管道内,下列干粉输送管道安装不正确的是()。
企业进行资产交换的行为是否属于非货币性资产交换,需要进行判断。下列各项中,构成非货币性资产交换判断标准之一的是()。
企业发行中期票据应披露企业主体信用评级和债项评级。( )
IntheUKthereareavarietyofrailcompaniesoperating.Asaresult,ifyouaregoingforalongjourneyacrossthecountry,
A、Trytoeatless.B、Walkmoreregularly.C、Eatmorefruits.D、Stopeatingfastfood.A信息明示题。女士提到她吃得很少但是还是不能减重,男士说itisnotago
最新回复
(
0
)