设f(x)在[a,b]上可导,f’(x)+[f(x)]2-∫axf(t)dt=0,且∫abf(t)dt=0。证明: ∫axf(t)dt在(a,b)内恒为零。

admin2018-01-30  34

问题 设f(x)在[a,b]上可导,f(x)+[f(x)]2-∫axf(t)dt=0,且∫abf(t)dt=0。证明:
axf(t)dt在(a,b)内恒为零。

选项

答案若F(x)在(a,b)内可取正值,由于F(a)=F(b)=0,故F(x)在(a,b)内存在最大值且为正,从而知F(x)在(a,b)内存在正的极大值,与(I)中的结论矛盾,故F(x)在(a,b)内不可能取正值。同理可证F(x)在(a,b)内也不可能取到负值,故F(x)在(a,b)内恒为零。

解析
转载请注明原文地址:https://jikaoti.com/ti/ZxdRFFFM
0

最新回复(0)