设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.

admin2019-08-23  9

问题 设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.

选项

答案AX=0[*]x1α1+x2α2+x3α3=0,由α3=3α1+2α2可得(x1+3x31+(x2+2x32=0, 因为α1,α2线性无关,因此[*]AX=0的一个基础解系为[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/ZuQRFFFM
0

最新回复(0)