首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维列向量组α1,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
n维列向量组α1,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2015-06-29
85
问题
n维列向量组α
1
,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交及(β,k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)一|β|
2
>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/Z7cRFFFM
0
考研数学一
相关试题推荐
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求A的特征值并计算limAn.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
设A=E+αβT,其中α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求可逆矩阵P,使得P-1AP=A.
求的特征值、特征向量,判断A能否相似对角化,若能对角化,则求出可逆矩阵P,使得P-1AP为对角矩阵.
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆.设,其中a1b1+a2b2+a3b3=0,证明W可逆,并求W-1.
设B=2A-E,证明B2=E的充分必要条件是A2=A.
随机试题
HistorianstendtotellthesamejokewhentheyaredescribinghistoryeducationinAmerica.It’stheone【C1】______theteacher
A.青霉素B.红霉素C.甲硝唑D.万古霉素血源性肺脓肿首选
给水管道防冻防结露的方法是对管道进行绝热,常用的绝热层材料有()。
因承包人超越其经营范围、资质等级签订的施工承包合同应当属于( )。
某股份有限公司为船舶制造企业。下列项目中,一定不包括在该股份有限公司建造合同成本中的有()。
处置投资性房地产时,与处置固定资产和无形资产的核算方法相同,其处置损益均计入营业外收入或营业外支出。()
根据《民法总则》《继承法》,下列遗嘱中,应认定有效的是()。
具有非凡的记忆力可以称为天才。()(2014·浙江)
20世纪后期,陕西凤雏村出土了刻有“凤”字的甲骨四片,这些“凤”字的形体大致相同,均为头上带有象征神权或王权的抽象化了的毛角的短尾鸟。东汉许慎《说文解字》云:“鸑鷟,凤属,神鸟也。……江中有鸑鷟,似凫而大,赤目。”据此,古代传说中鸣于岐山、兆示周王朝兴起的
关于唐朝刑法适用原则的表述,错误的有()。
最新回复
(
0
)