首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是 ( )
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是 ( )
admin
2019-05-15
47
问题
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是 ( )
选项
A、m=n且|A|≠0
B、AX=0有唯一零解
C、A的列向量组α
1
,α
2
,…,α
n
和α
1
,α
2
,…,α
n
,b是等价向量组
D、r(A)=n,b可由A的列向量线性表出
答案
D
解析
r(A)=n,b可由A的列向量线性表出,即为r(A)=r(A|b)=n,AX=b有唯一解.
(A)是充分条件,但非必要条件,(B)是必要条件,但非充分条件(可能无解),(C)是必要条件,但非充分条件(b由α
1
,α
2
,…,α
n
表出,可能不唯一).
转载请注明原文地址:https://jikaoti.com/ti/XMoRFFFM
0
考研数学一
相关试题推荐
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设二维随机变量(U,V)~N(2,2;4,1;1/2),记X=U-bY=V.求(X,Y)的密度函数(x,y).
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
判断下列曲线积分在指定区域D是否与路径无关,为什么?∫L,D={(x,y)|全平面除去-∞<x≤0,y=0}.
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明:方程f(x)=0在区间(0,1)内至少存在一个实根;
(1988年)设函数y=f(x)满足微分方程y"一3y’+2y=2ex,且其图形在点(0,1)处的切线与曲线y=x2一x+1在该点的切线重合,求函数y=y(x).
设则其以2π为周期的傅里叶级数在x=±π处收敛于______.
设函数f(x)在|x|≤1上有定义,在x=0的某个邻域内具有二阶连续导数,且
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,f′y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f′x(a,b)=0,且当r(a,b)>0时
随机试题
幼小衔接工作应贯穿于()而非入学前的突击训练。
A.高钙血症B.低钙血症C.T3、T4增高D.ACTH兴奋试验阳性E.血糖降低
根据递质的不同,将传出神经分为
关于施工方案中施工机械选择的说法,正确的有()。
下列有关税务登记的表述,正确的有()。
不宜让幼儿拎提太重的东西,是因为幼儿()
【《堪萨斯一内布拉斯加法案》】
[*]
若信元在交换过程中出现拥塞,该信息被记录在信元头的(27)中。
A、Sheshouldbecarefulabouthowtospendhermoney.B、Sheshouldnotbuythebrownsuit.C、Sheshouldthinkcarefullywhenshe
最新回复
(
0
)