首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
admin
2018-07-27
70
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
1 在正交变换x=Qy下,f(x
1
,x
2
,x
3
)=0化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而 [*] =y
3
e
3
=k(-1,1,0)
T
,其中k为任意常数. 2 由于f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,所以 [*] 其通解为x=k(-1,1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/VKIRFFFM
0
考研数学三
相关试题推荐
设有定义在(-∞,+∞)上的函数:其中在定义域上连续的函数是______;
求微分方程y’’+2y’-3y=ex+x的通解.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
已知α1,α2,…,αs是互不相同的数,n维向量αi=(1,αi,αi2,…,αin-1)T(i=1,2,…,s),求向量组α1,α2,…,αs的秩.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
已知X,Y是相互正交的n维列向量,证明E+XYT可逆.
已知二次型f(x1,x2,x3)=x12+x22+cx32+2ax1x2+2x1x3经正交变换化为标准形y12+2y32,则a=______.
设A为三阶实对称矩阵,且存在可逆矩阵又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)一1;(3)计算行列式|A*+E|.
随机试题
Theaimofaletterofapplication(求职信)istohelpyouto"sell"yourself.Itshouldstate【21】thejobyouwant,andshouldtell
下列关于细胞色素的叙述,正确的是
A、全身散在斑丘疹B、感染性休克,惊厥,呼吸衰竭C、发热、结膜炎D、发热、咽峡炎、草莓舌、全身弥漫性鲜红色皮疹E、睡眠不安、磨牙、肛周皮肤瘙痒上述哪项为猩红热的临床特点
下丘脑性闭经常见的原因是
下列计划工作中,属于大型建设工程项目总进度纲要主要内容的是()。
在Windows的“回收站”中,存放的()。
个人质押贷款中,经办人员接到客户提出的质押贷款申请后,应对质物的()进行调查。
解释商业银行业务经营中的“三性原则”?结合2008年美国金融危机产生的原因,阐述商业银行如何协调好“三性原则”之间的关系?
评定量表
AsinternationalattentionhasfocusedonColinKaepernick’sNikead,activistsandmanyonsocialmediahavepointedtothewel
最新回复
(
0
)