首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+…+bnxn=0的解,其中x=(x1,x2,…,xn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+…+bnxn=0的解,其中x=(x1,x2,…,xn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
admin
2018-07-27
31
问题
设齐次线性方程组A
m×n
x=0的解全是方程b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,其中x=(x
1
,x
2
,…,x
n
)
T
.证明:向量b=(b
1
,b
2
,…,b
n
)可由A的行向量组线性表出.
选项
答案
由条件知方程组Ax=0与方程组[*]x=0同解,故有r(A)=r[*],因此A的极大无关行向量组也是[*]的极大无关行向量组,故b可由A的极大无关行向量组线性表出,从而知6可由A的行向量组线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/USIRFFFM
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
求下列二阶常系数齐次线性微分方程的通解:(Ⅰ)2y’’+y’-y=0;(Ⅱ)y’’+8y’+16y=0;(Ⅲ)y’’-2y’+3y=0.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设4阶矩阵A的秩为2,则r(A*)=_____.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
由曲线y=lnx与两直线y=e+1-x及y=0围成平面图形的面积S=______.
曲线y=的渐近线方程为_______.
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
国家赔偿的方式有( )。
[2010真题·多选]在热力管道上,波形补偿器的使用特点包括()。
下列工作中,属于总监理工程师职责的有()。
从资产负债表日前后若干天的账簿记录查至记账凭证,检查发票存根与发运凭证,目的主要是为了()。
用分子轨道判断下列叙述,不正确的是()。
中共中央在《关于进一步加强和改进公安工作的决定》中指出:在各项执法工作中,公安机关和人民警察要真正把()作为第一信号。
给定资料1.2014年7月16日,以“破题银色中国”为主题的“2014中国应对老龄化社会发展论坛暨‘儿女孝亲工程’研讨会”在北京钓鱼台国宾馆举行。国家发改委社会发展司副司长郝福庆提出。在老龄化发展形势日益严峻的今天,中国亟须多样化的思路破解“银色
原告向两个以上有管辖权的人民法院提起行政诉讼的,由最先收到起诉状的人民法院管辖。()
事物的度体现了共性和个性的统一。()
Asthepaceoflifecontinuestoincrease,wearefastlosingtheartofrelaxation.Onceyouareinthehabitofrushingthroug
最新回复
(
0
)