首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α,α,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α,α,…,αr线性表示,又可用β1,β2,…,βs线性表示.
admin
2016-10-21
31
问题
设α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
是两个线性无关的n维向量.证明:向量组{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关
存在非零向量r,它既可用α,α,…,α
r
线性表示,又可用β
1
,β
2
,…,β
s
线性表示.
选项
答案
“[*]”因为{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关,所以存在c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
不全为0,使得 c
1
α
1
+c
2
α
2
+…+c
r
α
r
+c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
=0 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
r
=-(c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
), 则γ≠0(否则由α
1
,α
2
,…,α
r
,和β
1
,β
2
,…,β
s
都线性无关,推出c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
全为0),并且它既可用α
1
,α
2
,…,α
r
表示,又可用β
1
,β
2
,…,β
s
表示. “[*]”设γ≠0,它既可用α
1
,…,α
r
表示,又可用β
1
,…,β
s
表示. 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
s
=t
1
β
1
+t
2
β
2
+…+t
s
β
s
,则c
1
,c
2
,…,c
r
和t
1
,t
2
,…,t
s
都不全为0,而 c
1
α
1
+c
2
α
2
+…+c
r
α
s
-t
1
β
1
-t
2
β
2
-…-t
s
β
s
=0. 根据定义,{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/UKzRFFFM
0
考研数学二
相关试题推荐
验证函数在-1≤x≤1上是否满足拉格朗日定理,如满足,求出满足定理的中值ε。
一曲线通过点(e2,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该积分曲线.
求下列的不定积分。12
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
判断下列级数的收敛性:.
求下列微分方程的通解。(x+1)y’+1=2e-y
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=1/2x2,求曲线C2的方程.
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
随机试题
关于新发布的《处方管理办法》叙述错误的是
在1930年6月30,我国公布了()。
水运工程单位工程概、预算费用包括()等。
根据我国《诉讼费用交纳办法》的规定,劳动争议案件每件交纳案件受理费()。
关于了解内部控制后对控制风险的评价结论,以下说法中,恰当有()。
心理咨询员与求助者建立良好咨询关系的条件是()。
在以下4个WWW网址中,不符合WWW网址书写规则的是()。
MysonJoeywasbornwithclubfeet.Thedoctorsassuredusthatwithtreatmenthewouldbeabletowalknormally—butwouldneve
DreamFunctionsDreamingisacommonphenomenon.Practicallyallpeopledream,althoughwhethertheycan【1】______themisa
ElvisAaronPresleywasborninatwo-roomhouseinTupelo,MississippionJanuary8,1935.His【D1】______,JessieGarcon,dieda
最新回复
(
0
)