首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P一1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P一1AP为对角矩阵.
admin
2016-01-11
28
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
由题设,有A(α
1
一α
2
)=α
1
一α
2
,A(2α
1
一α
3
)=2α
1
一α
3
,A(α
2
+α
3
)=4(α
2
+α
3
),从而α
1
一α
2
,2α
1
一α
3
是A的属于特征值1的两个特征向量,α
2
+α
3
是A的属于特征值4的特征向量.又α
1
一α
2
,2α
1
一α
3
线性无关,从而α
1
-α
2
,2α
1
-α
3
,α
2
+α
3
线性无关,故P=(α
1
一α
2
,2α
1
-α
3
,α
2
+α
3
)为所求的可逆矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/TuDRFFFM
0
考研数学二
相关试题推荐
设A是四阶方阵,A*是A的伴随矩阵,其特征值为1,一1,2,4,则下列矩阵中为可逆矩阵的是().
设二维随机变量(X1,X2)的概率密度函数为f(x1,x2),则随机变量(y1,y2)(其中Y1的概率密度函数f1(y1,y2)等于()
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求矩阵A;
设幂级数an(x+1)n在x=4处条件收敛,在x=-6处发散,则幂级数的收敛域为________.
设随机变量X的概率密度为f(x),EX=μ,DX=σ2,(X1,X2,…,Xn)为总体X的简单随机样本,为样本均值,则正确的是()
设P{X=0)=1/4,P{X=1}=3/4,P{Y=-1/2}=1,3维向量组α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为()
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
闭区域D由直线x+y=0,x轴和y轴所围成,求函数z=f(x,y)=x2y(4-x-y)在闭区域D上的最小值和最大值.
设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=________.
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f"(ξ)=0.
随机试题
______是用户与Access数据库之间的接口,是用户使用Access处理自己数据的一个操作界面。
从心脏运送胆固醇至肝运送食物中脂肪
TATA盒通常位于转录起点上游
虚拟性是网络社会实践的首要特征和本质特征,人们的实践活动从传统物理空间转移到以信息技术为主的网络空间。网络虚拟社会可以将“现实人”转变成“虚拟人”,将人隐藏到漫无边际的网络节点背后,从事自己的行为和活动,表述自己的见解和主张。在虚拟社区中,性别、年龄、种族
近年来。专家呼吁禁止在动物饲料中添加作为催长素的联苯化合物,因为这种物质对人体有害。近十多年来,人们发现许多牧民饲养的荷兰奶牛的饲料中有联苯残留物。如果以下哪项陈述为真,最有力地支持了专家的观点?
简述渎职罪的概念和共同特征。
项目经理张工带领团队编制项目管理计划,()不属于编制项目管理计划过程的依据。
如果子网掩码是255.255.192.0,那么下面主机(63)必须通过路由器才能与主机129.23.144.16通信。
软件复审的主要对象是【】。
【B1】【B9】
最新回复
(
0
)