首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,An是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=xixj. 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
设A为n阶实对称矩阵,秩(A)=n,An是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=xixj. 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
admin
2018-08-03
18
问题
设A为n阶实对称矩阵,秩(A)=n,A
n
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n).二次型f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
因为(A
—1
)
T
AA
—1
=(A
T
)
—1
E=A
—1
,所以A与A
—1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://jikaoti.com/ti/S22RFFFM
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设随机变量X的密度函数为f(x)=,则P{|X—E(X)|<2D(X)}=___________.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)为偶函数,且满足f’(x)+2f(x)一3∫0xf(t一x)dt=一3x+2,求f(x).
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(Ⅰ)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
随机试题
若在查询条件中使用了通配符"!",它的含义是( )。
下列不属于腺泡细胞癌构成细胞的是
24小时体温相差超过1℃,但最低点未达到正常,热型属()
上市公司采取定向增发方式发行的有价证券属于私募证券()
金融资产发行后在不同投资者之间买卖流通所形成的市场称为()。
一般资料:某男,16岁,高一学生。自幼性格腼腆、胆小,不爱多说话,学习成绩一直很好。高中开始在外地借读,老家有个确定关系的女朋友。案例介绍:春节回老家,去女朋友家单独见面,发生了接吻和拥抱的行为。回来后每晚都想着春节发生的事,躺下后睡不着,就想女朋
我国现阶段所坚持的公有制经济为主体是指坚持国有经济为主体。()
设有4条路由:170.18.129.0/24.、170.18—130.0/24,170.18.132.0/24.和170.18.133.0/24,如果进行路由汇聚,能覆盖这4条路由的路由是()。
HewasoneofNewcastle’smost______medicalmen,aworldauthorityonheartdiseases.
Scientistsclaimthatin50year’stime,therewillbecomputersthat【M1】______arelikelytobeevenmoreintelligentthanhum
最新回复
(
0
)