首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2021-01-25
35
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设ξ
2
=(x
1
,x
2
,x
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [A,ξ
1
] [*] 得x
1
=-x
2
,x
3
=1-2x
2
(x
2
任意).令自由未知量x
2
=-c
1
,则得 ξ
2
[*] 其中c
1
为任意常数. 设ξ
3
=(y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
2
=ξ
1
,由 [A
2
,ξ
1
] [*] 得y
1
=-[*]-y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
ξ
2
ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/RtaRFFFM
0
考研数学三
相关试题推荐
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
[2008年]设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为().
[2015年]设矩阵且A3=O.求a的值;
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩(A)≤2;
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)的表达式.
设y=y(x)是由sin(xy)=确定的隐函数,求y’(0)和y"(0)的值.
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:随机变量X和Y的联合概率密度;
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
随机试题
国家标准规定的配合的基准制有________。
总分类账及其所属的明细分类账按平行登记规则进行登记,可以概括为:期间相同、依据相同、方向一致、金额相等。
满足主要材料设备安装订购要求的设计文件是:[2011年第74题]
多媒体的关键技术有()。
陕西省已查明矿产资源储量潜在总价值42万亿元,居全国之首,约占全国的()。
学生由于知识等方面缺乏,具有天然的向师性和对教师的依赖性,因此是被动的教育对象。()
新中国成立之后,毛泽东曾经指出,殖民地半殖民地国家的革命所采取的国家形式,既不是资产阶级专政的共和国,也不是无产阶级专政的共和国,而是第三种形式,这就是新民主主义共和国,它具有“过渡性”。这个“过渡性”表现为()
Youdon’tneedtocarrylargeamountsofcash;actuallyallfinancialbusinesseswillbeconductedbycomputers.
Nottoomanydecadesagoitseemed"obvious"bothtothegeneralpublicandtosociologiststhatmodernsocietyhaschangedpeo
OntheflagofAustralia,thesmallUnionJackrepresentsthehistoricallink______Britainandthelargesevenpointedstarrepr
最新回复
(
0
)