首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2021-01-25
37
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设ξ
2
=(x
1
,x
2
,x
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [A,ξ
1
] [*] 得x
1
=-x
2
,x
3
=1-2x
2
(x
2
任意).令自由未知量x
2
=-c
1
,则得 ξ
2
[*] 其中c
1
为任意常数. 设ξ
3
=(y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
2
=ξ
1
,由 [A
2
,ξ
1
] [*] 得y
1
=-[*]-y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
ξ
2
ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/RtaRFFFM
0
考研数学三
相关试题推荐
[2004年]二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x2)2的秩为_________.
[2003年]设随机变量X的概率密度为F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
[2009年]设事件A与B互不相容,则().
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩(A)≤2;
设总体X的概率密度为其中θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
当x→0时,kx2与[*]是等阶无穷小,则k=___________.
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{﹣1<X<4}≥a,则a的最大值为().
随机试题
防火卷帘具有现场手动电控、自动控制、消防控制室远程手动控制、温控释放控制、速放控制、现场机械控制和限位控制几种主要控制方式。()
十二经脉中,与喉咙有联系的经脉是
工程监理企业应当拥有一套健全的管理制度,现代化的管理手段,先进的管理理论、方法和手段,足够的技术、经济资料和数据,这是建设工程监理( )的表现。
网络计划的目标由工程项目的目标决定,一般可分为()等。
【2015贵州锦屏】陈述性知识主要回答()。
甲、乙、丙、丁四人对四个抽屉中的物品进行预测。甲:有些抽屉中没有书本;乙:所有抽屉中都有书本;丙:第二个抽屉中没有钢笔;丁:第三个抽屉中有信件。如果四人的断定中只有一项为真,那么以下哪项一定为真?
“特别强调党的领导作用”是指在公安工作与全党的关系上,公安工作必须置于党的绝对领导之下。()
Thebasicfeaturesofthecommunicationprocessareidentifiedinonequestion:Whosays______throughwhatchanneltowhom?
Bankingisaboutmoney;andnootherfamiliarcommodity(商品)arousessuchexcessesofpassionanddislike.Noristhereanyother
A、Herlandlordwillnotgivebackthebook.B、Herlandlorddidnotreturnthebook.C、Shehasabigfinefromtheschool.D、She
最新回复
(
0
)