首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点; (Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数; (Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设 (Ⅰ)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点; (Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数; (Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
admin
2019-06-28
73
问题
设
(Ⅰ)求f’(x);
(Ⅱ)证明:x=0是f(x)的极大值点;
(Ⅲ)令x
n
=
,考察f’(x
n
)是正的还是负的,n为非零整数;
(Ⅳ)证明:对
,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
选项
答案
(Ⅰ)当x≠0时按求导法则得 [*] 当x=0时按导数定义得 [*] (Ⅱ)由于f(x)-f(0)=-x
2
[*]<0(x≠0),即f(x)<f(0),于是由极值的定义可知x=0是f(x)的极大值点. (Ⅲ)令x
n
=[*](n=±1,±2,±3,…),则sin[*]=(-1)
n
,于是 f’(x
n
)=[*] (Ⅳ)对[*]>0,当n为[*]负奇数且|n|充分大时x
n
∈(-δ,0),f’(x
n
)<0[*]f(x)在(-δ,0)不单调上升;当n为正偶数且n充分大时x
n
∈(0,δ),f’(x
n
)>0[*]f(x)在(0,δ)不单调下降.
解析
转载请注明原文地址:https://jikaoti.com/ti/RULRFFFM
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,则下列等式中不一定成立的是()
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
设f(x)是区间[0,]上单调、可导的函数,且满足∫0f(x)f-1(t)dt=∫0xtdt,其中f-1是f的反函数,求f(x)。
设无界区域G位于曲线y=(e≤x<+∞)下方,x轴上方,则G绕x轴旋转一周所得空间区域的体积为_________。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
已知齐次线性方程组同解,求a,b,c的值。
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,C,d为常数)()
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
再生障碍性贫血治疗包括以下哪些方法
妊娠几周后,B型超声可作为产前诊断项目
临床上氯霉素常见的毒副作用包括
在房地产市场调查中,收集一手资料常用的方法有()。
混凝土桩制作时,预制构件的吊环必须采用()制作。
我国南方海港工程钢筋混凝土及预应力混凝土浪溅区的水灰比最大允许值为()。
对一定基数(1或100等)的外国货币单位,用相当于多少本国货币单位来表示的方法被称为( )。
甲企业对其拥有乙企业的长期股权投资采用成本法核算,在乙企业宣告发放现金股利时,甲企业的会计处理可能是()。
Swallowsnestinbarns,sheds,chimneysandother________places.
Asoneofthebiggestrestaurantsintheworld,McDonald’soriginationanddevelopmenthasbeenamiracleinthisfield.TheMcD
最新回复
(
0
)