已知圆x2+y2=a2,求此圆绕x=-b(b>a>0)旋转所生成的旋转体的体积和表面积.

admin2019-08-21  52

问题 已知圆x2+y2=a2,求此圆绕x=-b(b>a>0)旋转所生成的旋转体的体积和表面积.

选项

答案(I)体积如图3—3所示, [*] 方法一:取积分变量为y,变化区间[0,a],体积元素为薄圆环,则 [*] 则体积为 [*] 方法二:取积分变量为x,变化区间为[-a,a],体积元素为圆柱形薄壳,则 [*] 则体积为 [*] 由于[*]为奇函数,在[-a,a]上的积分为0,[*]为偶函数,令x=asin t.所以 [*] (Ⅱ)表面积 [*]

解析 根据图形的对称性,只需对x轴以上的部分进行计算即可.
错例分析:在求旋转体表面积S时,若将面积元素也视为圆柱形薄壳的表面积,则有dS=2π(b+x)dx,由此得出的错误结果.错误的原因在于:所找的微元dS=2π(b+x)dx与△S之差不是比dx高阶的无穷小.在用元素法解决实际问题时,这步是需要验证的.
转载请注明原文地址:https://jikaoti.com/ti/RMERFFFM
0

最新回复(0)