首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=, (Ⅰ)若f(x)处处连续,求a,b的值; (Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设f(x)=, (Ⅰ)若f(x)处处连续,求a,b的值; (Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
admin
2018-11-21
26
问题
设f(x)=
,
(Ⅰ)若f(x)处处连续,求a,b的值;
(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
选项
答案
(Ⅰ)首先求出f(x).注意到 [*] 故要分段求出f(x)的表达式. [*] 其次,由初等函数的连续性知f(x)分别在(一∞,一1),(一1,1),(1,+∞)上连续. 最后,只需考察f(x)在分界点x=±1处的连续性.这就要按定义考察连续性,分别计算: [*] 从而f(x)在x=1连续 ←→f(1+0)=f(1—0)=f(1)←→a+b=1=[*](a+b+1) ←→a+b=1; f(x)在x=一1连续 ←→f(一1+0)=f(一1一0)=f(一1)←→a一b=一1=[*](a一b—1) ←→a一b=一1. 因此f(x)在x=±1均连续←→[*]a=0,b=1.当且仅当a=0,b=1时f(x)处处连续. (Ⅱ)当(a,b)≠(0,1)时,若a+b=1(则a一b≠一1),则x=1是连续点,只有x=一1是间断点,且是第一类间断点;若a一b=一1(则a+b≠1),则x=一1是连续点,只有间断点x=1,且是第一类间断点;若a一b≠一1且a+b≠1,则x=1,x=一1均是第一类间断点.
解析
转载请注明原文地址:https://jikaoti.com/ti/Q72RFFFM
0
考研数学一
相关试题推荐
已知曲面S:x2+2y2+3z2=1,y≥0,z≥0;区域D:x2+2y=1,x≥0,则().
设A为m×s矩阵,B为s×n矩阵,要使ABX=0与BX=0为同解方程组的充分条件是().
直线L1:②().
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
设相互独立的随机变量X和Y均服从P(1)分布,则P{X=1|X+Y=2}的值为()
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵β的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程,求f(u)。
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有xf(x)dydz-xyf(x)dzdx-e2xzdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)。
求In=cosnxdx,n=0,1,2,3,….
随机试题
设函数z=f(x,y)在点(x0,y0)存在一阶偏导数,则=()
(2008)封闭空气间层的传热强度主要取决于()。
某市交通可视化信息管理系统,是在空间数据库基础上,利用GIS应用平台,通过空间分析、专题制图、三维模拟显示等手段,处理各条道路、各道路交叉监控数据与车流监控数据,从而提高该市道路交通信息化水平,同时为道路交通管理决策提供辅助支持。简述数据库主要功能需求
团体的规模主要取决于团体心理咨询的目标,以训练为目标的团体一般为()。
关系数据库规范化的目的是为了解决关系数据库中的
Assoonasheassumedhisnewposition,salesdirectorCarlReynoldssetan______targetfortheteamforthenextquarter.
A、Yes,I’mill.B、No,Idon’tthinkso.C、Yes,he’sverywell.D、Iagreewithyou.BJefflooksverypale.Doyouthinkheisill
说明:假没你是人事部经理FrankSmith,给员工Woody写一封解雇信。时间:11月27日内容:1.说明要解雇Woody;2.说明解雇的原因:经济不景气,公司效益低;3.对Woody的工作给予肯定,如果需要,可以为他写推荐信。注意信函格式
A、PromisingdrugswillsoonstopAIDS.B、ThespreadofAIDScouldbecontrolled.C、ItishopelesstowinthebattleagainstAIDS
Forgetthewidelyunlovedredesign.Facebookhascommittedagreateroffense.AccordingtoanewstudybydoctoralcandidateAry
最新回复
(
0
)