首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
admin
2017-05-31
25
问题
设f(x)在[a,b]上可导,且f’
+
(a)>0,f’
-
(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
选项
答案
f(x)在[a,b]的连续性,保证在[a,b]上f(x)至少达到最大值和最小值各一次.由f(a)≥f(b)得,若f(x)的最大值在区间端点达到,则必在x=a达到.由f(x)的可导性,必有f’
+
(a)≤0,条件f’
+
(a)>0表明f(x)的最大值不能在端点达到.同理可证f(x)的最小值也不能在端点x=a或x=b达到.因此,f(x)在[a,b]的最大值与最小值必在开区间(a,b)达到,于是最大值点与最小值点均为极值点.又f(x)在[a,b]可导,在极值点处f’(x)=0,所以f’(x)在(a,b)至少有两个零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/Q1zRFFFM
0
考研数学二
相关试题推荐
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
随机试题
导致正常男性精液凝固的主要因子是由哪一种组织器官决定的
A.按属地管理原则B.发出传染病预警C.向卫生行政部门报告D.预防接种制度E.强制隔离治疗措施王某系艾滋病患者。在传染病医院隔离治疗期间,擅自逃出医院回家。为防止艾滋病传播。对张某可以采取的措施是
以下对风险的描述中,正确的是()。
保障收益理财产品计划表现为以下特点:()。
消费者物价指数是指()的变化。
贤士隐居者士子修己笃学,独善其身,不求知于人,人亦莫能知者,所至或有之,予每惜其无传。比得《上虞李孟传》录示四事,故谨书之。其一日,慈溪蒋季庄,当宣和间,鄙王氏之学,不事科举,闭门穷经,不妄与人接。高抑崇居明州城中,率一岁四五访其庐。季
合唱分为_________合唱和_________合唱,通常用_________或_________伴奏,也可以是无伴奏合唱。
当前,党对新闻宣传工作提出了新的要求,时代发展赋予了新闻宣传工作新的内涵。新闻宣传工作要实现创新发展、与时俱进,必须坚持贴近实际、贴近生活、贴近群众。从哲学角度来看,新闻宣传坚持“三贴近”原则的主要依据不包括()。
A、1B、3C、2D、6E、8D原式==2×3=6,应选D。
ThelastsentenceofthefirstparagraphmeansAmazonissuccessfulwithTurkisprobablybecause
最新回复
(
0
)