首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,a14]T,α2=[a21,a22,a23,a24]T.证明:向量组α1,α2,β1,β2线性无关.
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,a14]T,α2=[a21,a22,a23,a24]T.证明:向量组α1,α2,β1,β2线性无关.
admin
2021-07-27
28
问题
设齐次线性方程组
有基础解系β
1
=[b
11
,b
12
,b
13
,b
14
]
T
,β
2
=[b
21
,b
22
,b
23
,b
24
]
T
,记α
1
=[a
11
,a
12
,a
13
,a
14
]
T
,α
2
=[a
21
,a
22
,a
23
,a
24
]
T
.证明:向量组α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
由题设条件:β
1
,β
2
线性无关,r(α
1
,α
2
)=2,α
1
,α
2
线性无关,且β
1
,β
2
是方程组的解,满足α
i
T
β
j
=0(i=1,2,j=1,2). [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/P6lRFFFM
0
考研数学二
相关试题推荐
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
设n阶矩阵A,B等价,则下列说法中不一定成立的是()
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
随机试题
简述用户在信息系统改善中的作用。
男性,29岁,口腔溃疡反复发作5年,加重半年。查:舌缘左右侧,各可见两块约1.0~1.2cm的溃疡,边缘不整,表面有灰白色的伪膜。下唇内侧粘膜有条形白色瘢痕。临床应注意与下列哪种疾病相鉴别
前期工程费用主要包括()。[2003年考题]
下列选项属于华尔街的第一次数学革命的重要理论是()。
注册会计师在对甲公司2×15年度财务报表进行审计时,关注到以下交易或事项的会计处理:(1)甲公司于2×15年9月20日用一项可供出售金融资产与乙公司一项管理用专利权进行交换,资产置换日,甲公司换出可供出售金融资产的账面价值为258万元(成本218万元,
关于ALU的叙述中,不正确的是()。
=________
按照Pentium微处理器的存储器分页管理机制,线性地址00COFFFCH 的页表基地址是【 】。
以下有关SELECT短语的叙述中错误的是( )。
下列叙述中正确的是
最新回复
(
0
)