首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(12)已经知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换x=QY将f化为标准形.
(12)已经知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换x=QY将f化为标准形.
admin
2018-08-01
40
问题
(12)已经知A=
,二次型f(x
1
,x
2
,x
3
)=x
T
(A
T
A)x的秩为2.
(Ⅰ)求实数a的值;
(Ⅱ)求正交变换x=QY将f化为标准形.
选项
答案
(Ⅰ)因为r(A
T
A)=r(A),对A施以初等行变换 [*] 可见当a=-1时,r(A)=2,所以a=-1. (Ⅱ)由于a=-1,所以A
T
A=[*].矩阵A
T
A的特征多项式为 |λE-A
T
A| [*] =(λ-2)(λ
2
-6A)=λ(λ-2)(λ-6), 于是得A
T
A的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 对于λ
1
=2,由求方程组(2E-A
T
A)x=0的一个非零解,可得属于λ
1
=2的一个单位特征向量[*](1,-1,0)
T
; 对于λ
2
=6,由求方程组(6E-A
T
A)x=0的一个非零解,可得属于λ
2
=6的一个单位特征向量[*](1,1,2)
T
; 对于λ
3
=0,由求方程组(A
T
A)x=0的一个非零解,可得属于λ
3
=0的一个单位特征向量[*](1,1,-1)
T
. 令矩阵Q=[*] 则f在正交变换x=Qy下的标准形为f=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/O8WRFFFM
0
考研数学二
相关试题推荐
已知在x>0处有二阶连续导数,且满足.求f(u)的表达式.
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设A是,n阶矩阵,下列结论正确的是().
设n维列向量α=(a,0,…,0,a)T,其中a
设A,B皆为n阶矩阵,则下列结论正确的是().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
设a0,a1,…,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
随机试题
Acreditcardisa【36】ofidentification【37】whichtheownermayobtainconsumercreditforthe【38】ofgoodsorservices【39】thanpa
正确的口腔健康模式是
某工程双代号网络计划中,工作M的持续时间为5d,相关节点的最早时间和最迟时间如下图所示,则工作M的总时差是()d。
年末结转后,“利润分配”账户的借方余额表示()。
根据增值税有关规定,下列说法正确的有()。
下列对于债权人取得的附生效条件的债权,说法正确的是()。
某公司已发行普通股100000股,拟发放50%的股票股利,并按配股后的股数支付了90000元的现金股利,若该股票当时市价为30元,则股票获利率为()。
新近,研究人员通过筛选14.7万个化合物,发现了5种能够刺激细胞变成神经细胞形式的分子。随后,开发出了这些分子的“变异型”化合物——Isx-9。研究中,他们在培养取自啮齿动物大脑海马体部位的神经干细胞时,加入了化合物Isx-9,结果神经干细胞聚集起来并形成
简述知觉的理解性及其影响因素。
以下不合法的用户标识符是()。
最新回复
(
0
)