首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a0,a1,…,an-1是n个实数,方阵 (1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量; (2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
设a0,a1,…,an-1是n个实数,方阵 (1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量; (2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
admin
2015-08-14
46
问题
设a
0
,a
1
,…,a
n-1
是n个实数,方阵
(1)若λ是A的特征值,证明:ξ=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于特征值λ的特征向量;
(2)若A有n个互异的特征值λ
1
,λ
2
,…,λ
n
,求可逆阵P,使P
-1
AP=A.
选项
答案
(1)λ是A的特征值,则λ应满足|λE一A|=0,即 [*] 将第2列乘λ,第3列乘λ
2
,…,第n列乘λ
n-1
加到第1列,再按第1列展开,得 [*] 得证ξ=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量. (2)因λ
1
,λ
2
,…,λ
n
互异,故特征向量ξ
1
,ξ
2
,…,ξ
n
线性无关,取可逆阵P=[ξ
1
,ξ
2
,…,ξ
n
],得 [*] 其中ξ
i
=[1,λ
i
,λ
i
2
,…,λ
i
n-1
]
T
,i=1,…,n.
解析
转载请注明原文地址:https://jikaoti.com/ti/R2DRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)内二阶可导,且x∈(0,+∞)都有f"(x)≠0,过曲线y=f(x)(0<x<+∞)上的任意一点(x0,f(x0))作切线,证明:除切点外,该切线与曲线y=f(x)无交点。
幂级数的收敛域为()。
3/2
[*]
f(x)在[-1,1]上连续,则x=0是函数g(x)=∫0xf(t)dt/x的().
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由口α1,α2,…,αn线性表示.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km皆有k1α1+k2α2+…+kmαm≠0,则().
计算极限.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为-1/2,又设X=X/3+Y/2.求ρxz;
随机试题
儿童身心发展有两个高速发展期—一新生儿期与青春期。这是身心发展()规律的反映。
我国的政党制度是中国共产党领导下的________和政治协商制度。
男,40岁,患糖尿病10余年,尿蛋白阴性,近1个月感下腹部胀,排尿不畅伴尿失禁。B超显示:膀胱扩大,尿潴留。其原因应考虑()
木模板及其支架的设计应符合现行国家标准《木结构设计规范》的规定,其中受压立杆除满足计算需要外,其梢径不得小于()mm。
某企业2017年初委托施工企业建造仓库一幢,9月末办理验收手续,仓库入账原值400万元;9月30日将原值300万元的旧车间对外投资联营,不承担联营风险,当年收取固定收入10万元(不含税)。当地政府规定房产原值扣除比例为30%。2017年度该企业上述房产应缴
儒家经典中,四书是指()。
费希纳定律表明()。
血红蛋白对血液酸碱平衡的调节发生在()。
"TheIcarusGirl"isthestoryof8-year-oldJessamyHarrison,nicknamedJess.ThedaughterofaNigerianmotherandanEnglish
Forthispart,youareallowed30minutestowriteashortessayonthetopicofReuseofTextbooksinSchools.Youshouldwrite
最新回复
(
0
)