首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关, 且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关, 且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn. 求方程组AX=b的通解.
admin
2019-04-22
73
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,
且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
,…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/NdLRFFFM
0
考研数学二
相关试题推荐
已知三阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2一4α3,是导出组Ax=0的解向量的个数为()
设A,B为n阶矩阵,则下列结论正确的是().
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设A,B均为n阶可逆矩阵,则下列运算正确的是()
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)在[a,b]上连续,且f〞(χ)>0,对任意的χ1,χ2∈[a,b]及0<λ<1,证明:f[λχ1+(1-λ)χ2]≤λf(χ1)+(1-λ)f(χ2).
随机试题
A、 B、 C、 B题干问的是这首歌是谁唱的。A选项说自己是个好歌手;C选项说索耶夫人的去向,均与题干无关。B选项说没听过这首歌,所以不知道歌手是谁,符合题意,故选B。
急性肾衰无尿或少尿早期,发生水中毒的常见原因是()
试述过敏性休克的抢救措施。
可以协助诊断输卵管妊娠破裂的检查项目是
以演示账套“云顺公司”为基础资料,进入演示账套“云顺公司”。新建报表,表页标识“01工资分配表”。添加表页,标识“02工资分配表”关键字:云顺,将表页锁定。
不同幼儿学习某一动作的具体时间不同,但是任何一个幼儿的动作的发展顺序是一致的,这体现了心理发展的()。
It’srelaxingtogetclosetonature________thebeauty.
人民代表大会是我国立法机关和国家权力机关,享有撤销法规、规章等规范性文件和人事罢免的权力,其监督权属于()监督权,因而具有极大的权威性。
先进性是马克思主义政党的生命所系、力量所在。党在新阶段的先进性是要靠千千万万高素质的党员在发展中国特色社会主义的具体实践中的先锋模范作用体现出来的。离开了党员的先进性。党的先进性就成了无源之水。在新的历史条件下共产党员保持和发展先进性要
Whydon’tbirdsgetlostontheirlongflightsfromoneplacetoanother?Scientistshavepuzzledoverthisquestionforalong
最新回复
(
0
)