首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
admin
2022-10-09
31
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
选项
答案
[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/NYfRFFFM
0
考研数学三
相关试题推荐
设相互独立的随机变量X1和X2的分布函数分别为F1(x)和F2(x),概率密度分别为f1(x)和f2(x),则随机变量y=min(X1,X2)的概率密度f(x)=()
设随机变量X与Y都服从正态分布,则()
求曲线y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积S,并求该平面图形绕y轴旋转一周所得旋转体的体积V.
计算下列反常积分:
设f(x),g(x)在[a,b]上连续,且证明:
设f(x)为偶函数,且记则对任意a∈(-∞,+∞),F(-a)等于()
设随机变量X关于随机变量Y的条件概率密度为而Y的概率密度为求
已知二维随机变量(X,Y)的概率密度为求(X,Y)的联合分布函数.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
若(X,Y)服从二维正态分布,则①X,Y一定相互独立;②若ρXY=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任一线性组合服从一维正态分布,上述几种说法中正确的是().
随机试题
下列哪项不属于早期甲状腺危象的表现()
CPU是计算机主机的核心部件,它的性能代表了计算机的性能。()
在多元化的企业中,()是一组复杂的资源,它可以通过管理和技术知识、经验和专业本领,把不同的业务连接在一起。
根据著作权法及相关规定,下列哪项行为可以不经著作权人许可,不向其支付报酬?
1938年6月,为阻止日军的攻势,国民党先是在________掘堤,未成功,后在________再次掘堤,给豫、皖、苏三省人民带来了深重的灾难。()
奥尔波特把人格个人特质分为()等层次。
给定材料:1.征信系统的开通,给全社会带来了一个征信潮流。相关报道指出,不仅是金融机构征信信息,连水电费延期缴纳、职场人“频繁跳槽”、“宠物扰邻”等也将相继进入个人信用管理体系。以下是部分网友对此现象的看法:甲:去年我在国外使用了某银行信用卡,回国后按
在我国,镇长、副镇长由县级人大选举和罢免。()
简述最高额抵押的特征。
陈先生:北欧人具有一种特别明显的乐观精神。这种精神体现为日常生活态度,也体现为理解自然、社会和人生的哲学理念。北欧人的人均寿命历来是最高的,这正是导致他们具备乐观精神的重要原因。贾女士:你的说法难以成立。因为你的理解最多只能说明,北欧的老年人为何具备乐观
最新回复
(
0
)