首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶矩阵,下列命题成立的是( ).
设A,B为n阶矩阵,下列命题成立的是( ).
admin
2020-01-15
24
问题
设A,B为n阶矩阵,下列命题成立的是( ).
选项
A、A与B均不可逆的充要条件是AB不可逆
B、R(A)<n与R(B)<n均成立的充要条件是R(AB)<n
C、Ax=0与Bx=0同解的充要条件是A与B等价
D、A与B相似的充要条件是E—A与E—B相似
答案
D
解析
【思路探索】通过举反例排除(A)、(B)、(C)项.
(A)项与(B)项类似,故均错误,而(C)项仅是必要而非充分条件.故应选(D).
事实上,若A~B,则由相似矩阵的性质知E—A~E一B;
反之,若E—A~E—B,则E一(E一A)~E一(E—B),即A~B.
对于选项(A),若A与B均不可逆,则|A|=|B|=0,从而|AB|=|A||B|=0,即AB不可逆.但若AB不可逆,推出A与B均不可逆.如 A=E,B=
,则AB=B,不可逆,但A可逆.
对于选项(B),与选项(A)相近,由于R(AB)≤min{R(A),R(B)},故若R(A)<n与R(B)<n均成立,则R(AB)<n,但反之,若R(AB)<n,推不出R(A)<n或R(B)<n,如A=E,B=
,则R(AB)=R(B)=1<2,但R(A)=2.
对于选项(C),由同型矩阵A与B等价→R(A)=R(B)可知,若Ax=0与Bx=0同解,则A与B等价,但反之不然.如
,则A,B等价,但Ax=0与Bx=0显然不同解.
故应选(D).
转载请注明原文地址:https://jikaoti.com/ti/NItRFFFM
0
考研数学二
相关试题推荐
=__________
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=_____
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分_____________.
二重积分的符号为____________.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设f(x)=,试将f(x)展为x的幂级数,并求的和.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中求矩阵A.
已知下列非齐次线性方程组(I),(II):(1)求解方程组(I),用其导出组的基础解系表示通解;(2)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解?
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
改变积分次序并计算
随机试题
在考生文件夹下有一个数据库文件“samp3.accdb”,里面已经设计好表对象“tBorrow”、“tReader”和“tRook”,查询对象“qT”,窗体对象“fReader”,报表对象“rReader”和宏对象“rpt”。请在此基础上按以下要求补充设计
下列哪一项不是影响病人学习的因素
奶牛,3岁,发情表现正常,食欲体温正常,但常从阴道中排除一些浑浊黏液,发情时排出量较多,屡配不孕,冲洗子宫的回流液像淘米水。该牛最可能患的疾病是
下列可持续发展的重点领域是()。
反映资产类账户的有( )。
主张课程的内容和组织应以儿童的兴趣或需要为基础,鼓励学生“做中学”,通过手脑并用以获得直接经验,这反映的课程类型是()。
半径为10米的圆形溜冰场上有7名同学,这些同学间的最短距离至多为:
皮亚杰有关发生认识论的研究,说明了个体身心发展的()。
设随机变量X1,X2,X3,X4独立同分布,且P{X1=0}=0.3,P{X1=1}=0.7,X=,求EX与E|X|.
设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);
最新回复
(
0
)