首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1.判断β1,β2,…,βs线性相关还是线性无关?
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1.判断β1,β2,…,βs线性相关还是线性无关?
admin
2018-06-27
29
问题
设α
1
,α
2
,…,α
s
线性无关,β
i
=α
i
+α
i+1
,i=1,…,s-1,β
s
=α
s
+α
1
.判断β
1
,β
2
,…,β
s
线性相关还是线性无关?
选项
答案
β
1
,β
2
,…,β
s
对α
1
,α
2
,…,α
s
的表示矩阵为. [*] |C|=1+(-1)
s+1
. 于是当s为偶数时,|C|=0,r(c)<s,从而r(β
1
,β
2
,…,β
s
)<s,β
1
,β
2
,…,β
s
线性相关. 当s为奇数时,|C|=2,r(C)=s,从而r(β
1
,β
2
,…,β
s
)=s,β
1
,β
2
,…,β
s
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/MudRFFFM
0
考研数学二
相关试题推荐
设函数z=f(u),方程u=ψ(u)+∫yx(f)df确定“是x,y的函数,其中f(u),ψ(u)可微;p(t),ψ’(u)连续,且ψ’(u)≠1.求.
设S表示夹在x轴与曲线y=F(x)之间的面积.对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积.求:(1)S(t)=S—S1(t)的表达式;(2)S(t)的最小值.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
求微分方程y"+4y’+4y=e-2x的通解.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设f(x)连续(A为常数),φ(x)=∫01f(xt)dt,求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
TheSmiths________intheneighborhood,buttheyliveinanothercitynow.
进行总钙和离子钙测定时,不能采用的标本为()
价值工程活动过程中,针对具体改进目标而寻求必要功能实现途径的关键工作是()
某业主拟投资一综合大厦项目,通过公开招标的方式分别选择了甲公司和乙公司作为综合大厦的监理单位和施工单位,并分别签定了合同。为保证投资效益,业主与甲监理公司签订的监理委托合同规定:监理工作内容包括对综合大厦项目进行风险损失分析和施工监理。
定向资产管理业务的内部控制包括( )。
政府采购合同履行中,采购人需追加与合同标的相同的货物、工程或者服务的,在不改变合同其他条款的前提下,可以与供应商协商签订补充合同,但所有补充合同的采购金额不得超过原合同采购金额的10%。()
根据企业所得税法的规定,下列说法不正确的有()。
设3阶矩阵只有一个线性无关的特征向量,则t=________.
某数据库应用系统中,数据库管理员发现某个查询功能是用多表连接操作实现的,此操作性能较差。在保证功能不变的前提下,若要提高该查询的执行效率,下列方法中可行的是()。
【S1】【S6】
最新回复
(
0
)