设,且f’’(x)>0,证明f(x)>x(x≠0)。

admin2019-04-22  29

问题,且f’’(x)>0,证明f(x)>x(x≠0)。

选项

答案由[*] 则有[*],所以f(0)=0(因为f’(x)存在,则f(x)一定连续)。且 [*] f(x)在x=0展成一阶麦克劳林公式 f(x)=f(0)+f’(0)x+[*]。 因为f’’(x)>0,则f’’(ξ)>0,故f(x)>f(0)+f’(0)x=x(x≠0)。

解析
转载请注明原文地址:https://jikaoti.com/ti/MfLRFFFM
0

最新回复(0)