首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
admin
2018-09-25
32
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.
试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
选项
答案
由拉格朗日中值定理有 f(0)-f(-2)=2f’(ξ
1
),-2<ξ
1
<0, f(2)-f(x)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知 [*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的大值在ξ∈(ξ
1
,ξ
2
)[*](-2,2)处取到,则φ(ξ)≥4,且φ(x)在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f’(ξ+2f’(ξ).f’’(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f’’(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://jikaoti.com/ti/LC2RFFFM
0
考研数学一
相关试题推荐
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设有微分方程y′-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设A是m×n矩阵,B是n×s矩阵,证明r(AB)≤r(B).
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
计算曲面积分I=(ax+by+cz+γ)2ds,其中∑是球面:x2+y2+z2=R2.
设随机变量序列X1,X2,…,Xn,…相互独立,EXi=μi,DXi=2,i=1,2,…,则当n→∞时,(Xi一μi)依概率收敛于__________.
设级数(un+un+1+un+2)=____________.
在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
求下列三重积分:(Ⅰ)I=(x2+y2)dV,其中Ω由z=16(x2+y2),z=4(x2+y2),z=16围成;(Ⅱ)I=dV,其中Ω由x2+y2+z2≤2z所确定;(Ⅲ)I=xyzdV,其中Ω:x2+y2+z2≤1位于第一卦限的部分.
随机试题
一个企业内对拥有独立产品市场、独立责任利益的部门实行分权管理的一种组织结构形式,被美国、日本大企业、大公司普遍采用,就是()
45岁男性,3天前右小腿皮肤破损处略红肿,疼痛,未予重视。今日病变扩散蔓延,疼痛加剧,伴畏寒,发热。查体:体温38℃,右小腿肿胀,压痛明显,表皮发红,指压稍退色,红肿边缘界限不清。正确的诊断是
颌下和颈部的蜂窝织炎可并发
医生李某,2007年5月取得医师执业资格证书,但未在任何医疗机构注册。2010年李某想在农村开设医疗门诊,那么李某申请重新执业,需要参加哪项考核
患儿流涕、咳嗽3天后,高热不退,咳嗽喘促,鼻煽。喉中痰声漉漉,口唇紫绀。其证候是()
根据《国务院关于投资体制改革的决定》,企业投资建设《政府核准的投资项目目录》中的项目时,仅需向政府提交()进行核准。
商业银行开展金融创新活动,应坚持公平竞争原则。()
范例教学的倡导者是——。
抗日战争是近代以来中华民族反抗外敌入侵第一次取得完全胜利的民族解放战争,中国赢得抗日战争胜利的主要原因是()
在考生文件夹下,打开文档WORD1.DOCX,按照要求完成下列操作并以该文件名(WORD1.DOCX)保存文档。【文档开始】多媒体系统的特征多媒体电脑是指能对多种媒体进行综合处理的电脑,它除了有传统的电脑配置之外,还必须增加大
最新回复
(
0
)