首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于( ).
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于( ).
admin
2018-05-25
21
问题
设A,B,A+B,A
-1
+B
-1
皆为可逆矩阵,则(A
-1
+B
-1
)
-1
等于( ).
选项
A、A+B
B、A
-1
+B
-1
C、A(A+B)
-1
B
D、(A+B)
-1
答案
C
解析
A(A+B)
-1
B(A
-1
+B
-1
)=[(A+B)A
-1
](BA
-1
+E)=(BA
-1
+E)
-1
(BA
-1
+E) =E,选C.
转载请注明原文地址:https://jikaoti.com/ti/KvIRFFFM
0
考研数学三
相关试题推荐
设连续型随机变量X的所有可能值在区间[a,b]之内,证明:(1)a≤EX≤b;(2)DX≤
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
已知α1=[1,-1,1]T,α2=[1,t,-1]T,α3=[t,1,2]T,β=[4,t2,-4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
已知方程组是同解方程组,试确定参数a,b,c.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
男,56岁。因患短肠综合征,予全胃肠外(TPN)治疗。应用1周时病人出现昏迷,但尿内无酮体。病人既往曾有空腹血糖增高史(11mmol/L)。此病的发病机制是由于()
中国第一本教育心理学翻译著作是1908年房东岳翻译日本小原又一的著作()
简述要约的概念及构成要件。
尿液中检出大肠埃希菌,区别病原菌、污染菌或正常菌群有赖于
下列关于发明专利申请提前公布的说法哪个是正确的?
对国民政府“改订新约运动”目的的表达,不正确的是()
在自然界中,空气______,促使空气达到______,是大气中水汽凝结的主要方式。
WhatIsthePaperlessOffice?Itbecameaclassicexampleofatechno-Utopianprophecybecomingfaulty.Thenotionofthe"
奈奎斯特准则从定量的角度描述了______与速率的关系。
Iftwotypistscantypetwopagesintwominutes,howmanytypistswillittaketotype18pagesinsixminutes?
最新回复
(
0
)