首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2018-09-25
37
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
用拉格朗日中值定理. 当a=0时,等号成立; 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理条件,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得[f(a+b)-f(b)]-[f(a)-f(0)]=af’(ξ
2
)-af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://jikaoti.com/ti/Jo2RFFFM
0
考研数学一
相关试题推荐
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fU(v).
已知α,β都是单位向量,夹角是,求向量2α+β与-3α+2β的夹角.
将下列函数f(x)展开成x的幂级数并求f(n)(0):(Ⅰ)f(x)=g(x),其中g(x)=(Ⅱ)f(x)=dt.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
设A和B是任意两个概率不为零的互不相容事件,则下列结论肯定正确的是()
计算行列式|A|=之值.
求其中∑为上半球z=的上侧,a>0为常数.
已知总体X的概率密度只有两种可能,设对X进行一次观测,得样本X1,规定当时拒绝H0,否则就接受H0,则此检验犯第一、二类错误的概率α和β分别为_______.
若在(-∞,+∞)上连续,且则()
随机试题
1968年6月23日在布鲁塞尔外交会议上通过了()
蛛网膜下腔阻滞麻醉后常并发尿潴留的主要原因是
A.既消食又回乳B.既消食又活血C.既消食又化痰D.既消食又催乳E.既消食又止遗隔山消的功效是()
最适当的诊断是应立即做何处理
案情:陈某因没有收入来源,以虚假身份证明骗领了一张信用卡,使用该卡从商场购物10余次,金额达3万余元,从未还款。(事实一)陈某为求职,要求制作假证的李某为其定制一份本科文凭。双方因价格发生争执,陈某恼羞成怒,长时间勒住李某脖子,致其窒息身亡。(事
按照净现值法,贷款价值的确定主要依据()的贴现值。
下列行为适用增值税17%税率的是()。
《庄子·逍遥游》指出“______________,_______________”,就像倒在堂前洼地的一杯水,无法浮起一个杯子一样。
下列哪组气体对环境的负面影响最大?()
StandardEnglishisthevarietyofEnglishwhichisusuallyusedinprintandwhichisnormallytaughtinschoolsandtonon-nat
最新回复
(
0
)