首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n的维向量,AX=0是n元齐次方程组。则( )正确。
设η1,η2,η3为3个n的维向量,AX=0是n元齐次方程组。则( )正确。
admin
2019-08-11
48
问题
设η
1
,η
2
,η
3
为3个n的维向量,AX=0是n元齐次方程组。则( )正确。
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n-3,则η
1
,η
2
,η
3
为AX=0的一个基础解系
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系,则它也是AX=0的基础解系
D、如果r(A)=n-3,并且AX=0每个解都可以用η
1
,η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX=0的一个基础解系
答案
D
解析
答案A缺少n-r(A)=3的条件。
答案B缺少η
1
,η
2
,η
3
线性无关的条件。
答案C例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系。
要说明答案D的正确性,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,方法如下:设α
1
,α
2
,α
3
是AX=0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,则r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解。
转载请注明原文地址:https://jikaoti.com/ti/J2nRFFFM
0
考研数学三
相关试题推荐
设f(x)在[一1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f’’(0)=4.求
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)一y(x)满足△y(1+△y)=+α,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
求下列微分方程的通解:y’=—tany;
求下列微分方程的通解:
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程()的通解.
设X1,X2,…,Xn是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
试求多项式p(x)=x2+ax+b,使积分∫-11p2(x)dx取最小值.
计算二重积分ye-4xdσ,其中D是由曲线y=ex与直线y=x+1在第一象限围成的无界区域.
已知A是3阶不可逆矩阵,一1和2是A的特征值,B=A2一A一2E,求B的特征值,并问B能否相似对角化,并说明理由.
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,一1,a+1,5)T线性相关,则a=___________.
随机试题
在拉深模中,凸、凹模圆角都有什么影响?
A.进行性贫血B.皮肤、鼻腔等处发生坏死性溃疡C.皮肤、黏膜出血D.频繁性呕吐E.胸骨压痛血小板减少可出现的临床表现是
标准普尔公司定义为()级的债务被认为有足够的能力支付利息和偿还本金,尽管在通常情况下其能得到足够的保护,但变化的环境更可能削弱该级债务的还本付息能力。
根据证监会公布的基金“一对多”合同内容与格式准则,单个“一对多”账户人数上限为()人。
我国古代掌管礼仪、接待外国宾客的官衙是()。
思考的人——2011年英译汉及详解Withitsthemethat"Mindisthemasterweaver,"creatingourinnercharacterandoutercircumstances,thebo
及时响应是______和实时操作系统的特征。
在名称为Forml的窗体上画一个图片框,其名称为Picturel,一个水平滚动条,名称为HScroll1,一个命令按钮,名称为Commandl,标题为“设置属性”,通过属性窗口在图片框中装入一个图形(文件名为picl.jpg,位于考生目录下),图片框的高度
Talktoanyoneinthedrugindustry,______you’llsoondiscoverthatthescienceofgeneticsisthebiggestthingtohitdrugre
TherewasatimenotlongagowhennewsciencePh.D.sintheUnitedStateswereexpectedtopursueacareerpathinacademia(学术
最新回复
(
0
)