首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如图所示,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是( )
如图所示,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是( )
admin
2019-01-15
42
问题
如图所示,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的下、上半圆周,设
,则下列结论正确的是( )
选项
A、
B、
C、
D、
答案
C
解析
根据定积分的几何意义知F(2)为半径是1的半圆面积,即
,F(3)是两个半圆面积(半径分别为
)差,即
,且
故选C。
转载请注明原文地址:https://jikaoti.com/ti/IvBRFFFM
0
考研数学三
相关试题推荐
(00年)在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电.以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于
(98年)设f(χ)连续,则tf(χ2-t2)dt=
(02年)设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(08年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则【】
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
设f(χ)在χ>0上有定义,对任意的正实数χ,y,f(χy)=χf(y)+yf(χ).f′(1)=2,试求f(χ)=_______.
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
设函数p(x)和f(x)在x∈[0,+∞)上连续,且p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
已知当x→0时,函数f(x)=3sinx-sin3x与cxk是等价无穷小,则k=_______,c=______.
设f(x)=sinx,求f(x)的间断点及分类.
随机试题
可用于分离霉菌及酵母菌的培养基是()。
“实”的病机最根本的方面是
A.人格测验问卷B.智力测验C.人格投射测验D.评定量表E.神经心理学测验
判断尿路感染病人是复发还是重新感染,通常以病人前次治疗停药后()再发为依据。
根据《公司法》的规定,以下机构中,可以发行公司债券的机构有()。
战略实施的推进实现的方面包括()。
皮亚杰认为儿童认知发展可分为四个阶段:_______、前运算阶段、具体运算阶段和形式运算阶段。
无产阶级最可靠的同盟军是()。
下面关于JTAG的叙述中,错误的是()。
WhenJackDavis,9,looksupatthenightsky,hedoesn’tseejustthestars.Heseeshisfuture.ThefourthgraderfromNewJe
最新回复
(
0
)