首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(02年)设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
admin
2017-05-26
36
问题
(02年)设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
选项
答案
方程组的系数行列式 [*] (1)当a≠b且a≠(1-n)b时,方程组仅有零解. (2)当a=b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 χ
1
+χ
2
+…+χ
n
=0 方程组的基础解系为 α
1
=(-1,1,0,…,0)
T
,α
2
=(-1,0,1,…,0)
T
,…,α
n-1
=(-1,0,0,…,1)
T
,方程组的全部解为 χ=c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
为任意常数). (3)当a=(1-n)b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 [*] 其基础解系为β=(1,1,…,1)
T
.方程组的全部解是χ=cβ(c为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/zzSRFFFM
0
考研数学三
相关试题推荐
设X2,X2,…,Xn相互独立的随机变量,且Xi(i=l,2,…,n)服从于参数为A的泊松分布,则
设f(x)=xsinx,则f(100)=(0)=().
命题“①若X、Y服从于正态分布且相互独立,则(X,Y)服从于二维正态分布;②若X、Y,服从于正态分布,则(X,Y)服从于维正态分布;③若(X,Y)服从于二维正态分布,则X+Y服从于一维正态分布;④(X,Y)服从于二维正态分布的充分必要条件是X、Y分别服从于
设α为常数,则级数().
设函数f(x)在x=0处连续,则下列命题错误的是().
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是__________.
设设A是二阶方阵,当k>2时,证明:Ak=O的充分必要条件为A2=O.
随机试题
Inrecentyearsanewandseriousproblemhasarisenforinternationalairlinesandtheirpassengers.Thisistherelativelynew
髂骨、耻骨和坐骨的总称是
主动脉瓣狭窄和关闭不全后期的病理化是
B市的京发公司与T市的蓟门公司签订了一份海鲜买卖合同,约定交货地在T市,并同时约定“涉及本合同的争议,提交S仲裁委员会仲裁。”京发公司收货后,认为海鲜等级未达到合同约定,遂向S仲裁委员会提起解除合同的仲裁申请,仲裁委员会受理了该案。在仲裁规则确定的期限内,
《国务院安委会关于进一步加强安全培训工作的决定》指出,建筑企业职工每年至少进行()的再培训。
下列各项中,属于消费税征税范围的是()。
根据国际生产折中理论,如果企业只有所有权优势与内部化优势,企业最适合采用的国际化经营方式是()。
树图可分为两类,一般将把组成事项展开的树图称为()树图。
Howlongdoesittakefromheretoyourhomeonfoot?
A、14.B、17C、20.D、56D
最新回复
(
0
)