首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________。
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________。
admin
2019-03-18
33
问题
设n阶矩阵A的秩为n一2,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________。
选项
答案
α
1
+k
1
(α
2
一α
1
)+k
2
(α
2
一α
1
),k
1
,k
2
为任意常数
解析
α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个线性无关的解,则α
2
一α
1
,α
3
一α
1
是Ax=0的两个非零解,且它们线性无关。又n—r(A)=2,故α
2
一α
1
,α
3
一α
1
是Ax=0的基础解系,所以Ax=b的通解为α
1
+k
1
(α
2
一α
1
)+k
2
(α
2
一α
1
),k
1
,k
2
为任意常数。
转载请注明原文地址:https://jikaoti.com/ti/HvLRFFFM
0
考研数学二
相关试题推荐
利用代换将方程y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解。
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式求导数f’(x);
设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
曲线y=x(1+arcsin)的斜渐近线方程为_______.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明向量组α,Aα,…,Am-1α线性无关.
求下列各函数的导数:
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=g(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12-3y22+5y32?
设z=z(x,y)有连续的二阶偏导数并满足①(Ⅰ)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
随机试题
A.清音B.过清音C.鼓音D.浊音E.实音气胸时叩诊呈()
患者,女,35岁。因不孕就诊,CT扫描子宫增大呈分叶状,表面光滑,子宫肌壁内实性略、低密度影,有钙化,宫腔受压移位。考虑为
男性,34岁,咳嗽、咳大量脓痰,痰液静置后分为三层,右下肺部听诊有固定的湿l罗音。该病人可能是
下列关于建筑职工意外伤害保险的论述中,正确的是( )。
按照规划,2020年我国新能源(包括可再生能源)在总能耗中的比例是15%,石油、煤炭等不可再生的传统能源比例仍达85%。在此背景下,节能提效被提到了我国发展低碳经济的首选位置上。低碳经济是以低能耗、低污染、低排放为基础的一个经济模式,包含能源的高效利用和清
赶路的人,为了远方的目标,无意留心沿路的风光。许多其实并不比你追寻的东西逊色的路边风物,被你轻易地忽略过去了,待我们多年后明白过来时,已追悔莫及。而当你把赶路的心态转换成散步的心态,你就会发觉,得到有味,失去也有味;富有有味,清贫也有味;成功有味,失败也有
设随机变量X的分布函数为F(x),如果F(0)=1/8,概率密度f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,求常数a,b.
用二维表来表示实体及实体之间联系的数据模型是______。
NarratorListentopartofadiscussioninaphysicsclass.TheprofessorisdiscussingForces.Nowgetreadytoanswer
A、Shecanoffermorehelpforpeopletobuytheirownhouses.B、Shecandoabetterjobforawomanclientinadivorcecase.C、
最新回复
(
0
)