在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )

admin2020-03-02  35

问题 在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(    )

选项 A、y’’’+y’’-4y’-4y=0.
B、y’’’+y’’+4y’+4y=0.
C、y’’’-y’’-4y’+4y=0.
D、y’’’-y+4y’-4y=0.

答案D

解析 这是一个由三阶线性常系数齐次微分方程的通解求微分方程的问题.根据通解的结构可知,r1=1,r2,3=±2i是其特征根,从而特征方程为
    (r-1)(r+2i)(r-2i)=0,  即r3-r2+4r-4=0,
故所求微分方程为
    y’’’-y’’+4y’-y=0.
转载请注明原文地址:https://jikaoti.com/ti/HiCRFFFM
0

最新回复(0)