首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,Aαi=iαi(i=1,2,3),α1=,求A.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),α1=,求A.
admin
2018-04-18
44
问题
设A为三阶矩阵,Aα
i
=iα
i
(i=1,2,3),α
1
=
,求A.
选项
答案
令P=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/EzdRFFFM
0
考研数学二
相关试题推荐
(I)因为A~B,故其特征多项式相同,即|λE-A|=|λE-B|,(λ+2)[λ2-(x+1)λ+(x-2)]=(λ+1)(λ-2)(λ-y),令λ=0,得2(x-2)=2y,即y=x-2,令λ=1,得y=-2,从而x=0.[*]
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点叼,η∈(0,1),使得fˊ(η)fˊ(ζ)=1.
考察一元函数f(x)的下列四条性质:①f(x)在区问[a,b]上连续②f(x)在区间[a,b]上可积③f(x)在区间[a,b]上存在原函数④f(x)在区间[a,b]上可导若用P→Q表示可由性质P推出性质Q,则有().
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
求极限.
(2012年试题,一)设函数f(x,y)为可微函数,且对任意的x,y都有则使不等式f(x1,y1)>f(x2,y2)成立的一个充分条件是().
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例系数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
如图1—3—17,一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y与x2+y2=1连接而成的.(1)求容器的体积;(2)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/
函数,的间断点的个数为_______.
随机试题
刮刀切削部分应具有足够的( )才能进行刮削加工。
糖尿病眼部并发症除哪项外均正确
A、B、C、D都是中学化学常见的物质,其中A、B、C均含有同一种元素。在一定条件下相互转化关系如下图所示(部分产物已略去)。若B、C为氧化物,B转化为C时,质量增加25%,则B转化为C的化学方程式是________。
中国共产党提出将“工农共和国”口号改为“人民共和国”口号的会议()。
2013年,国家统计局在一套表联网直报单位范围内对不同岗位的工资情况进行了调查,涉及16个行业门类的87万家法人单位。调查单位的就业人员按岗位分为单位负责人,专业技术人员,办事人员和有关人员,商业、服务业人员,生产、运输设备操作人员及有关人员5类。
解放战争时期,揭开土地改革运动序幕的文件是()
抵押权所担保债权的范围包括()。
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
外包模式是近些年来非常重要的管理概念和经营方法,企业将其部分业务或服务进行外包可以为其带来很多利益,以下()不属于外包管理可以为企业带来的益处。
开发基于Linux操作系统上的应用程序,可使用GCC工具来编译和连接。若仅希望对应用程序进行编译而不进行连接,需要在GCC命令中加入参数【79】。若希望编译连接后生成一个用于调试的符号表,需要在GCC命令中加入参数【80】。
最新回复
(
0
)