设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.

admin2017-04-11  40

问题 设三阶实对称矩阵A的特征值为λ1=8,λ23=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ23=2的特征向量为ξ2=,求属于λ23=2的另一个特征向量.

选项

答案因为实对称矩阵不同的特征值对应的特征向量正交,所以有ξ1Tξ2=-1+k=0[*]k=1[*]λ1=8对应的特征向量为ξ1=[*] 令λ23=2对应的另一个特征向量为ξ3=[*],由不同特征值对应的特征向量正交,得x1+x2+x3=0[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/EDzRFFFM
0

随机试题
最新回复(0)