首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
admin
2019-05-11
46
问题
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
选项
答案
令φ(χ)=f(χ)-g(χ),显然φ(a)=φ′(a)=0,φ〞(χ)>0(χ>a). 由[*]得φ′(χ)>0(χ>a); 再由[*]得φ(χ)>0(χ>a),即f(χ)>g(χ).
解析
转载请注明原文地址:https://jikaoti.com/ti/ClLRFFFM
0
考研数学二
相关试题推荐
设f(χ)为二阶可导的偶函数,f(0)=1,f〞(0)=2且f〞(χ)在χ=0的邻域内连续,则=_______.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明:(1)存在ξ∈(1,2),使得(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+f(ξ)g′(ξ)=0.
随机试题
A.胃肠平滑肌B.皮肤血管C.胃壁细胞D.中枢神经E.支气管平滑肌苯海拉明和异丙嗪的镇静催眠作用,主要是通过抑制何种组织而起作用
行车中当驾驶人意识到机动车爆胎时,应在控制住方向的情况下采取紧急制动,迫使机动车迅速停住。
简述“人的全面发展”的具体内涵。
脏腑失调病机,主要是指
男,13岁。2天前碰伤1,牙轻度松动,自觉有伸长感,检查牙髓活力实验同正常牙,轻叩痛,应诊断为
关节疼痛肿胀,晨僵,活动不利,畏寒怕冷,神倦懒动,腰背酸痛,俯仰不利,天气寒冷加重。舌淡胖,苔白滑,脉沉细。治宜
依法批准的流域规划中确定的大中型水利水电工程建设项目的用地,应当纳人()。
行政诉讼是一种特殊的诉讼,具有与其他诉讼不同的特有的原则,这些原则包括()。
Whilewatchingtelevision,______.
A、Itwassold.B、Itwasdestroyed.C、Itwasmovedtoanotherplace.D、Itwasdividedbythemanagement.C
最新回复
(
0
)