首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)f’’(x)+[f’(x)]2=0在(0,1)内至少有两个不同的实根.
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)f’’(x)+[f’(x)]2=0在(0,1)内至少有两个不同的实根.
admin
2019-04-08
30
问题
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,
.证明:
方程f(x)f’’(x)+[f’(x)]
2
=0在(0,1)内至少有两个不同的实根.
选项
答案
由罗尔定理知,存在ξ
2
∈(0,ξ
1
),使得f’(ξ
2
)=0. 构造辅助函数F(x)=f(x)f’(x),则F(0)=F(ξ
2
)=F(ξ
1
)=0. 再根据罗尔定理可得,存在η
1
∈(0,ξ
2
),η
2
∈(ξ
2
,ξ
1
),使得 F’(η
1
)=F’(η
2
)=0.结论得证.
解析
转载请注明原文地址:https://jikaoti.com/ti/CioRFFFM
0
考研数学一
相关试题推荐
矩阵相似的充分必要条件为()
已知矩阵(Ⅰ)求A99;(Ⅱ)设三阶矩阵B=(α1,α2,α3)满足B2=BA。记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x),f2(x)是连续函数,则必为概率密度的是()
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
函数F(x)=1/(1+x2)是否可作为某一随机变量的分布函数,如果(1)-∞
设φ(x)有连续二阶导数,且φ(0)=φ’(0)=0,du=yφ(x)dx+[sinx一φ’(x)]dy,试求u(x,y).
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
已知齐次线性方程组=有非零解,且矩阵是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
随机试题
自治区制定的自治条例和单行条例的审批权属于()。
非去极化型肌肉松弛药(nondepolarizingmuscularrelaxants)
借词
(2010年10月)简述外汇管理的意义。
不属于火邪的性质及致病特点有:()
关于胆汁的生理作用,下列哪一项是不正确的()(1999年)
下列哪项不是自助打印机基本结构
某市初中制作校服,每套200元,学校要求学生自愿订购。学生甲非常喜欢学校的校服,但家庭经济比较困难,担心父母不同意购买,便向班主任朱老师提出借款购校服,朱老师当即答应借200元给甲,但甲领到校服后迟迟不向朱老师还款。朱老师找到甲父母要求他们替儿子还款,但甲
贯彻“三个代表"重要思想,关键在坚持与时俱进,这里的“与时俱进”是指,中国共产党的全部理论和工作要()。
EachdayofEarthWeek,forexample,hasbeengivenovertoaseparateenvironmentalissue.Theyare,【C1】______,energyefficien
最新回复
(
0
)