首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
admin
2018-04-15
41
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f’(0)存在,且f’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*](0,δ),使得 [*] 故f’
+
(0)存在,且f’
+
(0)=A.
解析
转载请注明原文地址:https://jikaoti.com/ti/DpVRFFFM
0
考研数学一
相关试题推荐
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.求D的面积A;
=_________.
设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
用非退化(可逆)的线性变换化二次型f(x1,x2,x3)=-4x1x2+2x1x3+2x2x3为标准形,并求此非退化的线性变换。
设总体X的概率密度函数如下,X1,X2,…,Xn为总体X的样本。求λ的极大似然估计量;
设矩阵A的伴随矩阵且矩阵A,B满足[(A)-1]*BA-1=2AB+12E,求矩阵B。
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
以下四个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=③
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
证明:arctanx=arcsin(x∈(一∞,+∞)).
随机试题
根据恒定流的定义,下列说法中正确的是()。
作为投资方案经济效果评价指标,净现值和内部收益率的共同特点是()。
下列各项中,可以成为经济法主体的有()。
下列法律关系中的法律事实属于法律行为的是()。
生产劳动的目的在于把所学理论应用于实践,这个过程包括印证与增长两个方面。()
请认真阅读下列材料,并按要求作答。若指导六年级学生学习本课,试拟定教学目标。
法律通过其规定,告知人们某种行为所具有的、为法律所肯定或否定的性质以及它所导致的法律后果,使人们可以预先估计到自己行为的后果,以及他人行为的趋向与后果。这体现了法律规范的()
执行USEscIN0命令的结果是
PromisingResultsfromCancerStudyAnewexperimentalvaccine(疫苗)hasshownpromisingresultsinthefightagainstlungcanc
JustlikeChinese,Westernersgivegiftsonmanyoccasions,suchas,onbirthdaysoffamilymembers,atweddings,atChristmasa
最新回复
(
0
)