首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1, 线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1, 线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
admin
2019-03-12
22
问题
设向量β可由向量组α
1
,α
2
,...,α
m
线性表示,但不能由向量组(I):α
1
,α
2
,...,α
m-1
,
线性表示,记向量组(Ⅱ):α
1
,α
2
,...,α
m-1
,β,则
选项
A、若α
1
,α
2
,...,α
s
线性相关,则Aα
1
,Aα
2
,...,Aα
s
线性相关.
B、若α
1
,α
2
,...,α
s
线性相关,则Aα
1
,Aα
2
,...,Aα
s
线性无关.
C、若α
1
,α
2
,...,α
s
线性无关,则Aα
1
,Aα
2
,...,Aα
s
线性相关.
D、若α
1
,α
2
,...,α
s
线性无关,则Aα
1
,Aα
2
,...,Aα
s
线性无关.
答案
A
解析
因为(Aα
1
,Aα
2
,...,Aα
s
=A(α
1
,α
2
,...,α
s
),所以
r(Aα
1
,Aα
2
,...,Aα
s
)≤r(α
1
,α
2
,...,α
s
).
因为α
1
,α
2
,...,α
s
线性相关,有r(α
1
,α
2
,...,α
s
)
r(Aα
1
,Aα
2
,...,Aα
s
)
所以Aα
1
,Aα
2
,...,Aα
s
线性相关,故应选(A).
注意,当α
1
,α
2
,...,α
s
线性无关时,若秩r(A)=n,则Aα
1
,Aα
2
,...,Aα
s
线性无关,否则Aα
1
,Aα
2
,...,Aα
s
可以线性相关.因此,(C),(D)均不正确.
转载请注明原文地址:https://jikaoti.com/ti/CEBRFFFM
0
考研数学三
相关试题推荐
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
将函数f(x)=xarctanx一展开成x的幂级数,并求其收敛域.
判别下列正项级数的敛散性:(Ⅰ)(常数α>0,β>0).
设z=z(x,y)是由方程xy+x+y一z=ez所确定的二元函数,求dz,.
设z=f(u,v),u=φ(x,y),v=ψ(x,y)具有二阶连续偏导数,求复合函数z=f[φ(x,y),ψ(x,y)]的一阶与二阶偏导数.
设函数z=f(x,y)在点(x0,y0)的某邻域内有定义,且在点(x0,y0)处的两个偏导数f’x(x0,y0),f’y(x0,y0)都存在,则
设函数f(x)有二阶连续导数,且=一1,则
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:100个螺丝钉一袋的重量超过5.1千克的概率;
设且求y′.
设且AX=0有非零解,则A*X=0的通解为___________.
随机试题
成果:奋斗:共享
关于铝合金外窗框与砌体墙体固定方法,下列各项错误的是()。
背景达海制药厂机电安装工程项目由A单位实施工程总承包,其与某劳务公司签订了劳务分包合同,约定该劳务公司安排40名农民工做力工,进行基础地基处理和材料搬运工作。进场前进行了安全教育。地基工程结束后,准备工艺设备吊装作业,吊装方案详细可靠,具体内容
发行股票数量在3亿股以上的,发行人及其主承销商可以在发行方案中采取超额配售选择权。()
M投资者预计A股票将要跌价,于2012年4月1日与S投资者订立卖出合约,合约规定有效期为3个月,M投资者可按现有价格10元卖出A股票1000股,期权费为每股0.5元。2012年5月1日A股票价格下跌至每股8元(不考虑税金与佣金等其他因素)。关于S投资者
以下各项中,( )属于公司债券的发行人。
《“十三五”旅游业发展规划》指出要加快建立以()评价为主的旅游目的地评价机制。
一般而言,()是公司的执行机构。
政治上层建筑和思想上层建筑的关系是()。
下列命令中,修改库文件结构的命令是
最新回复
(
0
)