首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)+2=0.
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)+2=0.
admin
2019-08-23
23
问题
设f(x)在[0,1]上二阶可导,f(1)=1,且
,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)+2=0.
选项
答案
由[*]=1得f(0)=0,f’(0)=1, 由拉格朗日中值定理,存在c∈(0,1),使得f’(c)=[*] 令φ(x)=e
-2x
[f’(x)一1], 由f’(0)=f’(c)=1得φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ’(ξ)=0, 而φ’(x)=一2e
-2x
[f’(x)一1]+e
-2x
f"(x)=e
-2x
[f"(x)一2f’(x)+2],因为e
-2x
≠0,所以f"(ξ)一2f’(ξ)+2=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/A0QRFFFM
0
考研数学一
相关试题推荐
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明第一问的逆命题成立。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示。
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则,其中l1≠0。
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0证明:向量组α,Aα,…,Ak—1α是线性无关的。
随机试题
某患儿5岁,玩耍废弃的一次性医用空针时不慎刺入左眼2小时。查体:左眼视力0.6,结膜充血(++),角膜轻度水肿,但未见角膜伤口,前房深浅可,TYN(+),瞳孔圆,晶状体、玻璃体尚未见异常。伤后5小时,以上已有症状加重,视力下降至0.1,前房纤维性渗出,
A.潮解B.粘连C.腐烂D.虫蛀E.霉变鸡内金易变异的现象是()。
钱某为益扬有限公司的董事,赵某为公司的职工代表监事。公司为钱某、赵某支出的下列哪些费用须经公司股东会批准?(2015年卷三68题)
城市道路横断面形式的选择与组合应遵循的基本原则包括()
出票银行签发的由其在见票时按照实际结算金额无条件付给收款人或者持票人的票据是()。
固定分区存储管理把主存储器划分成若干个连续区,每个连续区称一个分区。经划分后分区的个数是固定的,各个分区的大小()。
首次以“台湾回到祖国怀抱,实现统一大业”来代替“解放台湾”的提法是在()
设曲线F为x2+y2+z2=1,z=z0(|z0|
TheexamplesofGEandStaplesinthefirstparagrapharetoshowthatbothcompaniesOneofthedrivingforcesbehindtherece
下列选项中属于Java语言的垃圾回收机制的一项是______。
最新回复
(
0
)